Lijin Zhang

Publications

Psychometrics · Quantitative Methods


Content

Research Topics

    Book Chapters

  1. Computational Neuroscience and Cognitive Modelling - Chinese Version, in press (Anderson, 2014)
    Translated chapters 9-13 (Neural Networks).
  2. Handbook of Quantitative Methods in Psychological and Behavioral Research (in Chinese)
    Wrote the Bayesian Structural Equation Modeling chapter with Dr. Junhao Pan.
  3. Journal Articles

    ( * indicates correspondent author, + indicates co-first author)

  4. Gu, X., Zhu, X., Zhang, L., & Pan, J.* (Accepted). Testing Informative Hypotheses in Factor Analysis Models using Bayes Factors. Psychological Methods.

  5. Zhang, L., Li, X., & Zhang, Z. (Accepted). Variety and Mainstays of the R Developer Community. R Journal

  6. Zhang, L., & Liang, X. * (2023). Bayesian Regularization in Multiple-Indicators Multiple-Causes Models. Psychological Methods. Advance Online Publication. [doi]

  7. Wang, E. Y., Kennedy, K. M., Zhang, L., Qian, D., Forbes, T., Zuniga-Hernandez, M., Li, B. S-K., Domingue, B., & Caruso, T. J. (2023). Predicting pediatric healthcare provider use of virtual reality using a technology acceptance model. Journal of the American Medical Informatics Association Open, 6(3), ooad076. [doi]

  8. Zheng, S., Zhang, L., Jiang, Z., & Pan, J. * (2023). The Influence of Using Inaccurate Priors on Bayesian Multilevel Estimation. Structural Equation Modeling, 30 (3), 429-448. [doi]

  9. Wei, X., Huang, J. +, Zhang, L., Pan, D.* & Pan, J. * (2022). Evaluation and Comparison among SEM, ESEM and BSEM in Estimating Structural Models with Potentially Unknown Cross-loadings. Structural Equation Modeling, 29 (3), 327-338. [doi]

  10. Zhang, L., Pan, J. * , & Ip, E.H. (2021). Criteria for Parameter Identification in Bayesian Lasso Methods for Covariance Analysis: Comparing Rules for Thresholding, p-value, and Credible Interval. Structural Equation Modeling, 28(6), 941-950. [doi]

  11. Zhang, L., Pan, J. * , Dubé, L., & Ip, E.H. (2021). blcfa: An R Package for Bayesian Model Modification in Confirmatory Factor Analysis. Structural Equation Modeling, 28(4), 649-658. [doi]

  12. Zeng, G., Zhang, L., Fung, S., et al. (2021). Problematic Internet Usage and Self-esteem in Chinese Undergraduate Students: The Mediation Effects of Individual Affect and Relationship Satisfaction. International Journal of Environmental Research and Public Health, 18(13), 6949. [doi]

  13. Chen, J. * , Guo, Z., Zhang, L., & Pan, J. * (2021). A Partially Confirmatory Approach to Scale Development with the Bayesian Lasso. Psychological Methods, 26(2): 210-235. [doi]

  14. Zheng, S., Zhang, L., Qiao, X., & Pan, J. * (2021). Intensive Longitudinal Data Analysis: Models and Application. Advances in Psychological Science, 29(11), 1948-1969. [doi]

  15. Zhang, X., Zhang, L., Ding, Y., & Qu, Z. * (2021). Behavioral Oscillations in Attention. Advances in Psychological Science, 29(3): 461-471. [doi]

  16. Feng, Q., Song, Q. +, Zhang, L. +, Zheng, S., & Pan, J. * (2020). Integration of Moderation and Mediation in a Latent Variable Framework: A Comparison of Estimation Approaches for the Second-stage Moderated Mediation Model. Frontiers in Psychology, 11: 2167. [doi]

  17. Liu, S., Huang, Z., Zhang, L., Pan, J., Lei, Q., Meng, Y., & Li, Z. * (2020). Plasma Neurofilament Light Chain may be a Biomarker for the Inverse Association between Cancers and Neurodegenerative Diseases. Frontiers in Aging Neuroscience, 12(10): 1-8. [doi]

  18. Zhang, L., Wei, X., Lu, J., Pan, J. * (2020). Lasso Regression: From Explanation to Prediction. Advances in Psychological Science, 28(10): 1777-1788. [doi]

  19. Zhang, L., Lu, J., Wei, X., & Pan, J. * (2019). Bayesian Structural Equation Modeling and its Current Research. Advances in Psychological Science, 27(11): 1812-1825. [doi]

  20. Preprints

  21. Ahmed, I., Bertling, M., Zhang, L., Ho, A., Loyalka, P., Xue, H., Rozelle, S., & Domingue, B.W. * (2023). Heterogeneity of item-treatment interactions masks complexity and generalizability in randomized controlled trials. [doi]

  22. Zhang, L., Kanopka, K., Rahal, C., Ulitzsch, E., Zhang, Z., & Domingue, B.W. (2023). The InterModel Vigorish for Model Comparison in Confirmatory Factor Analysis with Binary Outcomes. [doi]

  23. Domingue, B.W., Kanopka, K., Rahal, C., Ulitzsch, E., & Zhang, L. (2023). Implied probabilities of polytomous response functions for model-based prediction and comparison. [doi]

  24. Conference Presentations

    (Underline: Presenter)

    Invited Talk

  25. Zhang, L., & Pan, J.* (2022). Latent Multiple Mediation Analysis with the Bayesian Lasso. The 15th Chinese R Conference, 25 Nov, Virtual. [slides]

  26. Zhang, L., Pan, J., & Ip, E.H., (2022). Bayesian Lasso Confirmatory Factor Analysis. Utrecht University, 23 May, Virtual. [abstract] [slides]

  27. Zhang, L., Lu, J., Wei, X., & Pan, J. * (2019). Bayesian Structural Equation Modeling and its Current Research. The 12th Chinese R Conference, 24-26 May, Beijing. [slides]

  28. Contributed Conference Presentations

  29. Zhang, L., & Domingue, B.W. (2023). The InterModel Vigorish for Model Comparison in Confirmatory Factor Analysis with Binary Outcomes. International Meeting of Psychometric Society, July, Maryland, USA. [slides]

  30. Zhang, L., Liang, X., & Pan, J. (2023). Comparison between Bayesian and Frequentist Regularization in Factor Analysis. International Meeting of Psychometric Society, July, Maryland, USA. [slides]

  31. Zhang, L., & Domingue, B.W. (2023). The InterModel Vigorish for Model Comparison in Confirmatory Factor Analysis with Binary Outcomes. Annual Meeting of International Society for Data Science and Analytics, July 4-6, Shanghai, China. [slides]

  32. Zhang, L., & Liang, X. * (2023). Bayesian Regularization in MIMIC Models. National Council on Measurement in Education Annual Meeting, 12-15 April, Chicago, USA.

  33. Ip, E.H., Sandberg, J., Zhang, L., & Pan, J.* (2022). Matched-pair Binary Item Response Analysis Using Bayesian Adaptive Lasso Factor Model. International Meeting of the Psychometric Society, 11-15 July, Bologna, Italy.

  34. Zhang, L., & Pan, J. * (2021). How to Select Prior Variance in Bayesian Approximate Measurement Invariance. The 6th Eastern Chapter of International Society for Bayesian Analysis Conference, 17 November, Virtual.

  35. Zhang, L., & Liang, X. * (2021). Bayesian Regularization in MIMIC Models. International Meeting of the Psychometric Society, 19-23 July, Virtual. [abstract] [slides]

  36. Zhang, L., Pan. J * , & Ip, E.H. (2021). Comparison between Different Parameters Identification Criteria using the Bayesian Lasso. International Meeting of the Psychometric Society,, 19-23 July, Virtual. [abstract] [slides]

  37. Pan. J, Zhang, L., & Ip, E.H. * (2021). Bayesian Covariance Adaptive Lasso Factor Analysis Models with Ordinal Data. International Meeting of the Psychometric Society, 19-23 July, Virtual. [abstract]

  38. Zhang, L., Pan, J. * , & Ip, E.H. (2020). blcfa: An R package for Bayesian Model Modification in Confirmatory Factor Analysis. International Meeting of the Psychometric Society, 14-17 July, Virtual. [abstract] [slides]

  39. Zhang, L., Wei, X., Lu, J., & Pan, J. * (2019). Lasso Regression: From Explanation to Prediction. The 22nd Chinese Academic Conference of Psychology, 18-20 October, Hangzhou. [abstract] [slides]

  40. Zhang, L., Lu, J., Zhang, Y., & Pan, J. * (2019). The Influence of Social Support on Career Decision-Making Difficulty: Bayesian Modeling Based on Longitudinal Data. The 22nd Chinese Academic Conference of Psychology, 18-20 October, Hangzhou. [abstract][poster]

  41. Pan, J., Zhang, L., & Ip, E.H. * (2018). Bayesian Lasso Factor Analysis Models with Ordered Categorical Data. The 13th Cross-Straits Conference on Educational and Psychological Testing, 22-25 October, Taiwan. [slides]

  42. Pan, J., Zhang, L., & Ip, E.H. * (2017). Bayesian Lasso Factor Analysis Models with Ordered Categorical Data. The 20th Chinese Academic Conference of Psychology, 3-5 November, Chongqing. [abstract]

  43. Software Development

  44. Zhang, L., Pan, J., & Ip, E.H. (2020). blcfa: An R Package for Bayesian Model Modification in Confirmatory Factor Analysis. Retrievable from https://github.com/zhanglj37/blcfa.

  45. Zhang, L., Sun, R., & Pan, J. (2020). sampleMplus: An R Package for Sample Size Determination in Structural Equation Modeling. Retrievable from https://github.com/zhanglj37/sampleMplus.