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Bayesian Lasso



Regularization

When the number of variables is large and the sample size is

insufficient, the problem of over-fitting occurs and leads to

weakened model generalizability.

Regularization has the potential to create a better balance between

model simplicity and model fit in such conditions.

The lasso (least absolute shrinkage and selection operator;

Tibshirani, 1996) method has been used in many fields and

increasingly in social sciences (Lindstrøm & Dahl, 2020).
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Lasso in Regression Models

Consider a regression model with J predictors X to outcome data

Y by minimizing the estimation function

Llasso(β) = (|Y −Xβ|)2 + λ

J∑
j=1

|βj| (1)

• β: J × 1 vector of regression coefficients for the J predictors.

• Llasso(β) and (|Y −Xβ|)2: loss function of lasso regression

and least square difference, respectively.

• λ
∑J

j=1 |βj |: lasso penalty function with the tuning parameter

λ ≥ 0 that indicates the strength of the penalty.

The addition of the penalty term to the least square criterion tends

to result in simpler models that only include “strong” predictors.
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Bayesian Lasso

The Bayesian lasso has been increasingly used in the social

sciences for several reasons:

• lasso can be readily applied in Bayesian analyses by using the

double exponential priors (Park & Casella, 2008).

• the Bayesian lasso can provide estimates of standard errors

and intervals that are difficult to obtain under a frequentist

framework (Kyung et al., 2010).

• the tuning parameters can be more conveniently estimated

with other coefficients simultaneously under the Bayesian

lasso paradigm (Hans, 2009; Park & Casella, 2008).
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Applications of Lasso and Bayesian Lasso

Recently, novel methods that extend the lasso have been developed

for structural equation modeling (SEM) and network analysis.

• graphical lasso network models (Costantini et al., 2019);

• network analysis with an adaptive lasso method (Marcus,

Preszler, & Zeigler-Hill, 2017);

• Bayesian lasso confirmatory factor analysis (CFA; Chen et al.,

2020; Pan, Ip, & Dubé, 2017);

• exploratory mediation analysis (Serang et al., 2017);

• Bayesian adaptive lasso for ordinal regression with latent

variables (Feng, Wu, & Song, 2017);

• regularized multiple-indicators and multiple-caused (MIMIC)

models (Jacobucci, Brandmaier, & Kievit, 2019).
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Dilemma in Practice

Decision rules for parameter identification (i.e., for determining

whether a coefficient is non-zero and included in the model) tend

to vary greatly across studies.

At least three criteria for parameter identification have been used

in the literature.

• the thresholding rule;

• the p-value rule;

• the credible interval rule.

In this paper, we compare the three criteria for identifying

parameter for inclusion into a CFA model using the Bayesian lasso.
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Dilemma in Practice

To illustrate, we use a data set regarding burnout in elementary

school male teachers (N = 372) (Byrne, 1994, 2012). Participants

were asked to respond to the 22-item Maslach Burnout Inventory

(MBI, 7-point Likert scale ; Maslach & Jackson, 1981).
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Research Goals

Apply the Bayesian lasso to regularize both cross-loadings or

residual correlations (both within- and across-factor), to evaluate

the performance of the three criteria under different conditions.

Provide further recommendations on the decision rules for using

the Bayesian lasso CFA.
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Confirmatory Factor Analysis

Suppose y1, y2, ..., yn are independent random observations, and

each yi = (yi1, yi2, ..., yip)
T satisfies the following factor analysis

model:

yi = µ+ Λωi + εi, i = 1, 2, ..., n, (2)

• µ: intercepts.

• Λ: factor loading matrix reflecting the relationship between

observed variables in yi with the latent variables in ωi.

• εi: measurement errors (residuals), ∼ N [0,Ψ], independent of

ωi.
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Bayesian Lasso CFA

The theory being tested simply does not fit the data well due to

the assumptions:

• no cross-loading;

• zero residual covariances;

Under the Bayesian framework, the strict assumptions are relaxed

through the assignment of priors to the corresponding parameters.

Bayesian lasso:

• assigns double exponential priors for cross-loadings and

residual covariances matrix.

• simultaneously identifies non-negligible cross-loadings and

residual covariances in a joint estimation procedure.
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Bayesian Lasso CFA

Note that subsequent to using the Bayesian lasso or another

regularized method, it is quite common to reanalyze the data with

the identified freed (non-zero) parameters without regularization

(Muthén & Asparouhov, 2013; Serang et al., 2017; Serang &

Jacobucci, 2020).

The identification of “significantly large” non-zero entries require

careful operationalization.

12 / 30



Different Ways of Parameter

Identification with the Lasso

Method



The Thresholding Rule

Frequentist Lasso:

• 0, 0.001 (Liang & Jacobucci, 2020; Serang et al., 2017;

Serang & Jacobucci, 2021; Yuan & Liu, 2020).

Bayesian Lasso:

• 0.1 (|β| ≥ 0.1, Guo et al., 2012; Hoti & Sillanpää, 2006;

Feng, Wu, & Song, 2017).

The cutoff value can also be justified from a substantive

standpoint.

• cross-loading of less than 0.1 can be considered to have little

practical importance (Muthén & Asparouhov, 2012).

• correlation coefficient as 0.1 is a typical value of low-effect

size (Cohen, 1988).
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The p-value and Interval Rule

Frequentist Lasso:

• In regression models, R-package covTest (Lockhart et al.,

2014) can be used to obtain p-values.

• In network analysis, Epskamp et al. (2018) demonstrated how

frequentist-lasso regularization can provide confidence

intervals using a bootstrap method.

Bayesian Lasso:

• it is relatively straightforward to obtain p-values.

• credible intervals such as the HPD interval can also be

calculated using Markov Chain Monte Carlo (MCMC; Gilks,

Richardson, & Spiegelhalter, 1996) algorithms.
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Simulation Study



Simulation Study

To investigate the performance of three criteria, as well as their

associated decision rules for detecting significant

cross-loading/residual correlation under a range of experimental

conditions.

• Sample size: 200, 500, 1000.

• Model Size: 2 factors and 10 items, 3 factors and 18 items.

• Effect Size: 0, 0.1, 0.2, 0.3 for cross-loadings; 0, 0.1, 0.3, 0.7

for residual correlations.
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Simulation Study
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Model Estimation

To avoid the possible confounding effect, the conditions of

non-zero cross-loadings and non-zero residual correlations were

separately analyzed.

• M1: model with some non-zero cross-loadings and diagonal

residual covariance matrix.

• M2: model with some non-zero off-diagonal residual

covariance entries but no cross-loading.
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Model Estimation

Priors for the intercepts and factor covariance matrix:

µ ∼ N(µ0,Hµ0), Φ−1 ∼Wishart(R0, ρ0) (3)

For M1, the loadings for the j-th item Λj =
(Λm

j

Λc
j

)
where Λmj and

Λcj respectively represent main loadings and cross-loadings

Λmj ∼ N(Λ0j ,H0j),Λ
c
j |ψjj ∼ N(0, ψjjDτj ) (4)

ψ−1
jj ∼ Gamma(a0j , b0j),Dτj = diag(τ2

j1, ..., τ
2
jK) (5)

τ2
jk ∼ Gamma(1,

γ2

2
), γ2 ∼ Gamma(alj , blj) (6)
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Model Estimation

For M2,

Λj ∼ N(Λ0j ,H0j), (7)

Following Khondker et al. (2013) and Wang (2012), graphical lasso

priors are specified for the inverse of the residual

variance-covariance matrix, Ψ−1 = Σ = (σjj′):

σjj ∼
λ

2
exp(−λ

2
σjj), (8)

σjj′ ∼
λ

2
exp(−λ|σjj′ |), j < j′ (9)

λ ∼ Gamma(aλ0, bλ0). (10)
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Sensitivity Analysis

We adopted three sets of values for hyperparameters, results were

similar.
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Parameter Identification

The following criteria for parameter identification were used in the

current study:

• Thresholds of magnitude 0, 0.05, 0.1, and 0.15, with the

decision rule to include if the absolute value of the standard

estimate is larger than the cutoff.

• A p-value with α = 0.05, with the decision rule to include if

p < 0.05. The p-value can be different from the frequentist

p-value, it is one-tailed and is based on MCMC samples rather

than the z-test.

• A 95% HPD interval, with the decision rule to include if the

point 0.0 is outside the 95% HPD interval.
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Evaluation Criteria

Three metrics were considered for a performance comparison of the

decision rules:

• Power: the probability of correctly identifying the

cross-loadings/residual correlations when the parameters are

non-zero (Muthén & Asparouhov, 2012).

• Type-I error rates: the probability of erroneously identifying

the cross-loadings/residual correlations when the parameters

are zero.

• The ratio of correct identification to the total number of

identified parameters (Yuan & Liu, 2020).
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Results: Power

• The HPD interval rule performed worst in detecting non-zero

cross-loadings when the sample size was small or when the

target was within-factor residual correlations.

• The p-value rule had similar power problems as the HPD

interval rule.

• The thresholding rule is more robust to sample sizes.
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Results: Type I Error Rate

The general pattern was almost a mirror image of that of power.
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Results: The Ratio of Correct Identification

• The more conservative the rule, the higher the ratio of correct

identification.

• The metric was higher for cross-loadings compared to residual

correlations, which was partly caused by the relatively large

proportion of zero residual correlations in the generative

models.
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Detect Cross-loadings & Residual Covariances Simultaneously

• The co-existence of cross-loadings and residual correlations

may be expected in practice.

• The phenomenon of low power of p-value and HPD interval

methods was still present for within-factor residual

correlations.

• Compared to performance when only one kind of parameter

was present, we found the HPD interval and p-value methods

were more sensitive to model size and provided lower power.
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Discussion



Recommendation
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Usage of The Thresholding Rule

• The 0.1 cutoff value, which we recommend for detecting

cross-loading, can be a candidate for application to parameter

identification for path coefficients in SEM.

• We conjecture that using a cutoff of 0.15 for other correlation

parameters would be appropriate if the Bayesian lasso model

is adopted.

• For exploratory analysis in SEM in which the purpose is to

extract as many potentially important relationships as

possible, the cutoff value can be lowered.
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Limitations and Future Research

• Limited model sizes.

• Extension of the lasso method (e.g., adaptive lasso).

• Comparison with one-step approach such as the spike-and-slab

method.
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Thanks for listening!
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