InterModel Vigorish for Model Comparison in Confirmatory Factor Analysis with Binary Outcomes

```
Lijin Zhang<sup>1</sup>, Zhiyong Zhang<sup>2</sup>, Charles Rahal<sup>3</sup>,
Klint Kanopka<sup>1</sup>, Esther Ulitzsch<sup>4</sup>, Ben Domingue<sup>1</sup>
```

¹ Stanford University

² University of Notre Dame

³ University of Oxford

⁴ Leibniz Institute for Science and Mathematics Education

Content

- ► Introduction
 - Confirmatory Factor Analysis with Binary Outcomes
 - ► Traditional Model Fitting Indices
- InterModel Vigorish in CFA
- Simulation Studies
 - ► Simulation 1: InterModel Vigorish in Model Selection
 - Simulation 2: IMV vs Traditional Fitting indices
- Empirical Study
- Discussion

IMV in CFA 2/22

Confirmatory Factor Analysis

A CFA model for
$$J$$
 items $\mathbf{y}_i = (y_{i1}, \cdots, y_{iJ})^T$:
$$\mathbf{y}_i = \boldsymbol{\mu} + \boldsymbol{\Lambda} \boldsymbol{\omega}_i + \boldsymbol{\epsilon}_i, \quad i = 1, 2, \cdots, n, \tag{1}$$

- $ightharpoonup \Lambda$ factor loading
- $\triangleright \omega_i$ factor score
- $\blacktriangleright \mu$ intercept
- $ightharpoonup \epsilon_i$ residual error

► Has been widely used to assess the fit of a theoretical measurement model to observed data.

IMV in CFA 3/22

Traditional Fitting Indices

Comparative Fit Index (CFI), Tucker-Lewis Index (TLI):

► > 0.95 indicates good model fitting

Root Mean Square Error of Approximation (RMSEA), Standardized Root Mean Squared Residual (SRMR):

► < 0.08 indicates good model fitting

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC)

 χ^2 Difference Test

IMV in CFA 4/22

Limitations

	CFI	TLIF	RMSEA	SRMR	χ^2	AIC	BIC	
Fixed cutoff lacks generalizability	\checkmark	\checkmark	\checkmark	\checkmark	_	\checkmark	\checkmark	
Hard to interpret the size of Δ Index	\checkmark							
No penalty for model complexity	_	-	-	\checkmark	\checkmark	_	-	
Cannot provide item-level information	\checkmark							
Require nested model comparison	_	_	_	_	\checkmark	_	_	

Note. \checkmark : the index has this limitation.

IMV in CFA 5/22

InterModel Vigorish

- ▶ Build a fair bet with a weighted coin (w_0) based on the baseline prediction: \$1 (you) vs $\$\frac{1-w_0}{w_0}$ (your opponent).
- ▶ Updated the coin with the enhanced prediction (w_1) .
- ▶ What is your expected win / lost?

$$\mathsf{IMV} = \frac{1 - w_0}{w_0} * w_1 - 1 * (1 - w_1) = \frac{w_1 - w_0}{w_0} \tag{2}$$

IMV in CFA 6/22

Weight and Prediction

Connect weight with prediction: Suppose there is a binary variable \mathbf{x} and the predicted probability from a model is p_i of $x_i = 1$. The mean log-likelihood would be:

$$A = \frac{1}{n} \sum_{i} (x_i \log p_i + (1 - x_i) \log(1 - p_i))$$
 (3)

Create a coin with weight w that can produce the same log-likelihood:

$$\operatorname{argmin}_{w}[|w\log(w) + (1-w)\log(1-w) - A|].$$
 (4)

IMV in CFA 7/22

Confirmatory Factor Analysis with Binary Outcomes

A CFA model for J dichotomous items $\mathbf{x}_i = (x_{i1}, \dots, x_{iJ})^T$ can be conducted by introducing underlying continuous variables \mathbf{y}_i :

$$\mathbf{y}_i = \boldsymbol{\mu} + \boldsymbol{\Lambda} \boldsymbol{\omega}_i + \boldsymbol{\epsilon}_i, \quad i = 1, 2, \cdots, n,$$
 where $x_{ij} = 1$ if $y_{ij} > \pi_j$ (5) $x_{ij} = 0$ otherwise

Delta Parameterization

- $\blacktriangleright \mu_i$ is set at zero
- $ightharpoonup Var(\mathbf{y}_i)$ is set at one

IMV in CFA 8/22

InterModel Vigorish in CFA

- ▶ Separate the datasets into the training set and the test set
- ▶ Identify parameter estimates with data in the training set
- Predict the responses in the test set (recall that the probability $Pr(x_{ij} = 1)$ is crucial in calculating the IMV values):

$$Pr(x_{ij} = 1 | \boldsymbol{\omega}_i, \boldsymbol{\Lambda}, \psi_{\epsilon j}, \pi_j) = Pr(y_{ij} > \pi_j | \boldsymbol{\omega}_i, \boldsymbol{\Lambda}, \psi_{\epsilon j}, \pi_j)$$

$$= \boldsymbol{\Phi}^* \left[\left(\boldsymbol{\Lambda}_j / \psi_{\epsilon j}^{1/2} \right) \boldsymbol{\omega}_i - \pi_j / \psi_{\epsilon j}^{1/2} \right]$$
(6)

IMV in CFA 9/22

IMV versus Traditional Indicies

- Portability and Interpretability IMV offers an intuitive approach to assessing the benefits and costs of prediction accuracy on a standardized scale of \$1.
- ► Item-level Information

 Could be useful in identifying specific model mis-specifications
- ► Avoid Model Overfitting shifts the researcher's focus from explanation to prediction
- Traditional Fitting Indicies in CFA with Binary Outcomes Robust χ² difference test: nested model comparison AIC BIC: not available
 CFI TLI RMSEA SRMR: not designed for model comparison

IMV in CFA 10/22

Simulation Design

► Sample Size: 250, 500, 800, 1000, 200

► Effect Size of Cross-loadings: 0.1, 0.2, 0.3, 0.4, 0.5

IMV in CFA 11/22

Model Comparison

IMV in CFA 12/22

Model Comparison

- 1. $IMV(p_{M_1}, p_{M_0})$: M_1 is the model missing one cross-loading (λ_{31}) ;
- 2. $IMV(p_{M_2}, p_{M_0})$: M_2 is the model missing two cross-loading (λ_{31}) ;
- 3. $IMV(p_{M_3}, p_{M_0})$: M_3 is a two-factor model;
- 4. $IMV(p_{M_0}, p_{M_4})$: M_4 is a over-fitted model which includes one more cross-loading (λ_{16}) ;
- 5. IMV(p_{M_0}, p_{M_5}): M_5 is a over-fitted model with two more cross-loadings (λ_{16} and $\lambda_{2,11}$);

IMV in CFA 13/22

Scale-level IMV

► IMV values effectively reflect the extent of model mis-specification.

IMV in CFA 14/22

Item-level IMV (N = 2000, effect size = 0.3)

True Model

- IMV value for x_{10} (0.2) is much higher than x_9 , $x_{11} x_{15}$ (0.03).
- ► True model vs Model omits λ_{31} : Prediction accuracy for other items in F1 increased ($x_2 - x_4$, IMV \approx .02).

IMV in CFA 15/22

Simulation Study 2

- ▶ Traditional Fitting Indicies: CFI, TLI, RMSEA, SRMR, and χ^2 (Robust versions were used)
- Fitness of individual models:
 - CFI TLI should be larger than 0.95, RMSEA, SRMR should be smaller than 0.08
 - ▶ In modeling conditions 1, 2, 4, and 5, almost all indicies show an excellent model fit.

► These cutoffs lack generalizability.

IMV in CFA 16/22

Correlation: IMV and the Traditional Indicies

- ► IMV exhibits a strong correlation with changes in traditional indices, while being much more straightforward to interpret.
- ► SRMR supports the overfitted model over the true model.

IMV in CFA 17/22

Robust χ^2 Difference Test

IMV in CFA 18/22

Empirical Study

- ► Behavior Problem Index Scale
- ▶ Data (Kim et al., 2021): N = 469, 28 items, six factors

IMV in CFA 19/22

Model Comparison

- 1 Six-factor model vs Outcome prevalance (ignoring correlation between items): IMV = .179
- 2 Randomly combined two factors (peer problems and dependent):

Table: Comparison between the 5-factor and 6-factor Models.

Indicies	5-factor Model	6-factor Model		
CFI	.958	.962		
TLI	.954	.958		
RMSEA	.039	.037		
SRMR	.094	.089		
IMV for all items	.005			
IMV for pp1	.020			
IMV for pp2	.011			
IMV for pp3	.009			
IMV for de1	.012			
IMV for de2	.019			
IMV for de3	.054			
IMV for de4	.0:	21		

IMV in CFA 20/22

Takeaways

- ► Portability across different contexts
- ► IMV does not rely on a single cutoff to determine if the model fit has significantly improved or not. Instead, it prioritizes the magnitude or "effect size" of the improvement.
- ► Traditional indices and IMV evaluate different facets of model fitting. the former focuses on how well the model fits the current data, while the latter emphasizes the model prediction.
- ▶ Item-level information facilitates targeted model modifications.

IMV in CFA 21/22

Thanks for Listening

- ► Slides: https://lijinzhang.com/share/230727_imv.pdf
- ► lijinzhang@stanford.edu

IMV in CFA 22/22