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Introduction



Confirmatory Factor Analysis

Suppose y1,y2, ...,yn are independent random observations, and

each yi = (yi1, yi2, ..., yip)
T satisfies the following factor analysis

model:

yi = µ+ Λωi + εi, i = 1, 2, ..., n, (1)

• µ : p× 1 vector of intercepts.

• Λ : p× q factor loading matrix, reflects the relation of

observed variables in yi with the q × 1 latent factors in ωi.

• ωi ∼ N [0,Φ].

• εi : p× 1 random vector of measurement errors, ∼ N [0,Ψ],

independent of ωi.
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Model Violations

While theory-based CFA is more compelling in many ways,

sometimes the theory being tested does not fit the data well.

• violation of local independence (residual correlations)

• missing cross-loadings
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Model Violations

• Revert to exploratory factor analysis (EFA), compare the

results derived from the two different approaches, and make

changes for a separate round of exercise in CFA.

• Use modification indexes (MIs) for identifying components in

the model that could be tweaked for the purpose of improving

overall goodness-of-fit, known as post hoc model modification

(PMM, Kaplan, 1990; Sörbom, 1989).
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Post-hoc Model Modification

There are several advantages of PMM from a practical point of

view (Bentler & Bonett, 1980; MacCallum, 1995; Sörbom, 1989).

Several problems of using the PMM methodology:

• the use of modification indexes can be easily influenced by the

researchers’ subjective choices.

• over-fitting problem.

• parameters must be modified sequentially, causes difficulties in

finding the global optimal model (Chou & Bentler, 1990).

• there is no guarantee that the modified covariance matrix is

positive definite.
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Bayesian CFA (Muthén & Asparouhov, 2012)

Relax the strict constraints in traditional CFA using small variance

priors

• Cross-loadings: zero mean, small variance prior (e.g.,

N [0, 0.01]).

• Residual covariances: inverse-Wishart prior (IW (I, df) with

df = p+ 6, p = number of items, gives a prior standard

deviation of 0.1)
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Lasso

In the frequentist framework, the Lasso approach implements

regularization by adding a penalty term to the usual likelihood so

that the model would move toward a solution that contains fewer

parameters.

PL(θ) = log(p(y | θ,M)) + λ

p∑
j=1

|θj | = LL(θ) + λ

p∑
j=1

|θj | (2)

8 / 43



Bayesian Lasso

In the Bayesian framework, the key quantity is the posterior

distribution

p(θ | y,M) ∝ p(y | θ,M)× p(θ |M) (3)

The log posterior in a Bayesian approach takes the general form

log(p(y | θ,M)) + log(p(θ |M)) = LL(θ) + LPrior(θ) (4)

If the appropriate form of the prior distribution is chosen, the log

prior distribution in Bayesian analysis tends to play the role of the

penalty function in Lasso.
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Bayesian Covariance Lasso

σii ∼
λ

2
exp(−λ

2
σii), σij ∼

λ

2
exp(−λ | σij |), i < j (5)

where Σ = Ψ−1 = (σij)p×p
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Bayesian Lasso CFA

• Detects all the significant residual covariances and

cross-loadings in one estimation, thus, circumvents the

problem of having to handle model violations sequentially.

• Achieves model parsimony as well as an identifiable model.

• The detection of residual covariances and cross-loadings can

reduce the bias in structural estimates.
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Simulation Studies



Simulation Study

Purpose: Test the performance of blcfa in parameter recovery

Non-zero cross-loadings were set at 0.5

Non-zero residual covariances were set at 0.3

N = 250, 500
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Model Estimation
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Simple Model
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Complex Model
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Summary

Bayesian Lasso CFA performed well in

• obtaining accurate estimates

• maintaining a simple model structure (low type I error rates)

• detecting important cross-loadings & between-factor residual

correlations.

How to handle the low power problem for the within-factor residual

correlations in simple mode structures?

• Use different method for identifying parameters (e.g.,

threshold rule rather than HPD interval)

• Replace the lasso method with adaptive lasso
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Simulation Study

To investigate the performance of blcfa in parameter identification,

we manipulated the following factors in the simulation study.

• Sample size: 200, 500, 1000

• Model Size: 2 factors and 10 items, 3 factors and 18 items

• Effect Sizs: 0, 0.1, 0.2, 0.3 for cross-loadings; 0, 0.1, 0.3, 0.7

for residual correlations
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Model Estimation

To avoid the possible confounding effect, the conditions of

non-zero cross-loadings and non-zero residual correlations were

separately generated and analyzed.

• M1: model with some non-zero cross-loadings and diagonal

residual covariance matrix

• M2: model with some non-zero, off-diagonal residual

covariance entries but no cross-loading.
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Parameter Identification

• Thresholds of magnitude 0, 0.05, 0.1, and 0.15 with the

decision rule to include if the absolute value of the standard

estimate is larger than the cutoff.

• A p-value with α=0.05, with the decision rule to include if p ¡

0.05. The p-value can be different from the frequentist

p-value, it is one-tailed and is based on MCMC samples rather

than the z-test.

• A 95% HPD interval, with the decision rule to include if the

point 0.0 is outside the 95% HPD interval.
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Evaluation Criteria

• Power: the probability of correctly identifying the

cross-loadings/residual correlations when the parameters are

non-zero (Muthén & Asparouhov, 2012).

• Type-I error rates: the probability of erroneously identifying

the cross-loadings/residual correlations when the parameters

are zero.
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Results: Power

• The HPD interval and p-value rule have similar power

problems in detecting within-factor residual correlations.

• The thresholding rule is more robust to sample sizes.
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Results: Type I Error Rate

The general pattern was almost a mirror image of that of power.
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Detect Cross-loadings & Residual Covariances Simultaneously

• The co-existence of cross-loadings and residual correlations

may be expected in practice.

• The phenomenon of low power of p-value and HPD interval

methods was still present for within-factor residual

correlations.

• Compared to performance when only one kind of parameter

was present, we found the HPD interval and p-value methods

were more sensitive to model size and provided lower power.
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Recommendation
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Usage of The Thresholding Rule

• The 0.1 cutoff value, which we recommend for detecting

cross-loading, can be a candidate for application to parameter

identification for path coefficients in SEM.

• We conjecture that using a cutoff of 0.15 for other correlation

parameters would be appropriate if the Bayesian lasso model

is adopted.

• For exploratory analysis in SEM in which the purpose is to

extract as many potentially important relationships as

possible, the cutoff value can be lowered.
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R Package blcfa



R Package blcfa

To make use of the advantages of Bayesian Lasso CFA in detecting

residual covariances and cross-loadings, we propose a two-steps

method for model modifications:

• (1) detect significant cross-loadings and/or residual

covariances different from zero by Bayesian Lasso CFA;

• (2.1) free the identified significant parameters;

• (2.2) automatically feed the output from (2.1) into Mplus to

obtain an appropriately modified CFA model using Maximum

likelihood (ML) estimator or Bayesian estimation.

We built an R package named ’blcfa’ to facilitate the application

of this method.
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Example

Detailed Illustration: https://github.com/zhanglj37/blcfa

Installation

install.packages(”devtools”)

library(devtools)

install github(”zhanglj37/blcfa”)
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Detect Cross-loadings and Residual Covariances

Social Support Scale, 5-points Likert scale, 17 items, three factors
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Example

Function:

blcfa(filename, varnames, usevar, IDY, estimation = ’Bayes’, ms =

-9, interval = TRUE)

# estimation ( = ’ML’ / ’Bayes’, the default value is ’Bayes’)

# ms represents missing value

# interval: Detect significant residual correlations and

cross-loadings based on HPD interval or threshold

After running this function:

The program is running. See ’log.txt’ for details.

Gibbs sampling ended up, specific results are being calculated.

(’log.txt’ records the process of parallel computing of two MCMC

chains)
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Convergence: Estimated Potential Scale Reduction Value
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Results
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Ordinal Data and Adaptive Lasso



Ordinal Data

• Most analyses of the model have been carried out under the

framework of confirmatory factor analysis with the assumption

that the observed variables are continuous and have normal

distribution.

• To satisfy the assumption, most subjects are required to select

intermediate options from all options.

• However, in practical applications, the histogram of most

variable is biased.

32 / 43



Ordinal Data

Assume a data set has such a biased histogram and the continuous

measurements yj(yj ∼ N [0, 1]) are unobservable

The relationship between yj and the observable variable:

For l = 0, 1, 2, 3, αjl < yj < αj,l+1

−∞ = α0 < α1 < α2 < α3 < α4 = +∞
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Model Identification

The random vector of latent continuous variables

yi = (yi1, yi2, ..., yip)
T satisfies the following factor analysis model:

yi = µ+ Λωi + εi (6)

Because intercpets, residual variances, and thresholds are

uncertain, models with ordered categorical variables are not

identified without imposing identification conditions.
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Model Identification

The variances of the measurement errors εij can be identified by

using one of two types of constraints (Forero & Maydeu-Olivares,

2009). One is to fix the variances of εij to 1.0, and the other is to

fix the variances of latent continuous variables yij to 1.0. The

latter one is adopted in our model.

Parameters µj and αj,l can not be simultaneously estimable. One

common method is to constrain the first threshold αj,1 to a fixed

value. For example, to fix αj,1 = φ∗−1(f∗j,1), where φ∗(·) is the

standard normal distribution function, f∗j,1 is the frequency of the

first category (see Lee, 2007).
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Adaptive Lasso

As an extension of lasso, Zou (2006) proposed the adaptive lasso

(alasso) by imposing different penalty strengths on parameters

from different scales.

The frequentist alasso adds weights to rescale the penalty

parameter as: γ/|β0p |, where β0p is the preliminary estimates of βp

(e.g., ML estimate).

The Bayesian alternative to adaptive lasso can be obtained by

including a coefficient-specific penalty parameter to impose unique

shrinkage on each parameter.
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Simulation Study

Four non-zero residual covariances (ψ16, ψ27, ψ35, ψ8,10) were set

at 0.2.

The continuous measurements (y1, y2, · · · , y10)T were transformed

to ordered categorical observations (z1, z2, · · · , z10)T via the

following thresholds: αj = (αj1, αj2) = (0.0, 1.0) for

j = 1, 2, · · · , 10, where the αj1’s were fixed to identify the ordered

categorical variables.
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Adaptive Lasso vs Lasso
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Adaptive Lasso vs Lasso
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Discussion



Discussion

• We proposed Bayesian Lasso CFA for relaxing the exact zero

constrains on residual covariances and cross-loadings.

• Simulation 1: Accurate estimates and acceptable power in

most conditions.

• Simulation 2: The performance of the thresholding rule is less

sensitive to the change of sample size.
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Discussion

• An R package blcfa was developed to facilitate the usage.

• The Bayesian Lasso CFA method can detect significant

residual covariances and cross-loadings in one estimation and

circumvent the limitations of post-hoc model modifications.
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Future Research

• We extended the lasso method to adaptive Lasso method and

ordinal data.

• Comparison between Ridge, Lasso, and Alasso under the

frequentist and Bayesian framework in factor analysis (will be

presented at IMPS 2022).
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Thanks for listening!
slides: https://lijinzhang.com/share/220523_blcfa.pdf
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