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Introduction



Regularized Structural Equation Modeling (SEM)

Trade-off between model fitting and model complexity in SEM.

• Complex model - overfitting, less generalizability

• Simple model - omit important variables, poor model fitting

Regularization for achieving model parsimony and high

generalizability (e.g., Jacobucci & Grimm, 2018a).

• Shrink nuisance parameters toward zero & identify essential

parameters

• Retain accurate parameter estimates & improve the

generalizability of estimates
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Bayesian Regularization

Bayesian regularization assigns penalty priors to regularize the

posterior distributions of parameters.

It is flexible in (Polson & Sokolov, 2019; van Erp et al., 2019):

• estimating the shrinkage parameters

• quantifying the uncertainty of parameter estimates

• handling small sample sizes
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Bayesian Regularization

Different penalty priors:

• Ridge: global shrinkage

• Lasso (least absolute shrinkage and selection operator; Park &

Casella, 2008; Tibshirani, 1996): global shrinkage

• Adaptive lasso (alasso; Zou, 2006): local shrinkage

• Spike-and-slab prior (SSP; Mitchell & Beauchamp, 1988):

assign a discrete mixture of normal distributions on parameters

• Horseshoe (Carvalho et al., 2010): global-local shrinkage
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Bayesian Regularized SEM

Methods Measurement Models Structural Models

Ridge Muthén & Asparouhov (2012, 2013)

Lasso Chen et al. (2021), -

Pan et al. (2017),

Zhang et al. (2021);

Alasso Chen (2021), Feng et al. (2017),

Pan et al. (2021); Jacobucci & Grimm (2018b),

Brandt et al. (2018);

SSP Lu et al. (2016) Brandt et al. (2018)

Horseshoe - -

Tabel 1: Integration of Different Penalty Priors with SEM
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Method Comparison

Comparison Model

Chen et al. (2021) Ridge Lasso Measurement

Lu et al. (2016) Ridge SSP Measurement

Feng et al. (2017) Alasso Lasso Structural

Brandt et al. (2018) Alasso ALasso+SSP Structural

Tabel 2: Comparison between Different Penalty Priors

• Lasso and SSP have advantages in achieving parsimonious

factor structures than ridge.

• Alasso has benefits in reducing appreciable bias caused by the

global lasso shrinkage.
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Purpose

Investigate the performance of different Bayesian regularization

methods in parameter estimation and variable selection using

MIMIC models:

• Penalty priors vs Non-informative prior

• Global vs Local vs Global-local shrinkage

• Under different modeling conditions (sample sizes,

multicollinearity, effect sizes)
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MIMIC Models

Suppose there are K latent factors ω measured by J indicators y

and regressed on P predictors X, a MIMIC model (Jöreskog &

Goldberger, 1975) can be expressed as follows:

yi = µ+ Λωi + εi, i = 1, 2, ..., n, (1)

ωi = µω + βXi + δi (2)

• yi : observed values of J indicators for the i-th participant.

• µ,µω : vector of intercepts.

• Λ : factor loading matrix.

• ωi : latent factors.

• εi : measurement errors.

• β : path coefficients.

• δi : factor disturbances.
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MIMIC Models

The utility of MIMIC models is versatile (Finch & Miller, 2019)

• Control the influence of covariates on latent variables

• Test the measurement invariance between groups

• Identify differential item functioning

MIMIC Model with One-factor and Six-indicators
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Bayesian Regularization



Bayesian Ridge

βp ∼ N(0, σ2) (3)

• βp : p-th parameter to be regularized.

• σ2 : variance hyperparameter, determines the penalty strength.

• The prior variance can be fixed at a preassigned value such as

0.01 (Muthén & Asparouhov, 2012) or 0.001 (Jacobucci &

Grimm, 2018a), or be estimated through a hyperprior.

Applications

• Identify cross-loadings and residual correlations (e.g.,

Falkenström et al., 2015)

• Handle small sample sizes (e.g., Crenshaw et al., 2016)

• Assess measurement invariance (e.g., de Bondt & van

Petegem, 2015)
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Bayesian Lasso

βp ∼ N(0, ψωτ
2
p ), ψ

−1
ω ∼ Gamma(αω, βω) (4)

τ2p ∼ Gamma(1,
γ2

2
), γ2 ∼ Gamma(al, bl) (5)

• τp is included to obtain the desired

Laplace distribution of the

conditional prior.

• γ is the global penalty parameter.

Applications

• Identify cross-loadings and residual

correlations (Chen et al., 2021; Pan

et al., 2017; Zhang et al., 2021)
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Bayesian Adaptive Lasso

βp ∼ N(0, ψωτ
2
p ), ψ

−1
ω ∼ Gamma(αω, βω) (6)

τ2p ∼ Gamma(1,
γ2p
2
), γ2p ∼ Gamma(al, bl) (7)

• γp : local penalty parameter.

Bayesian adaptive lasso has been extended to:

• SEMs with ordinal variables (Feng et al., 2017)

• Latent change score models (Jacobucci & Grimm, 2018b)

• Detect multiple linear and nonlinear effects in SEM with SSP

(Brandt et al., 2018)
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Spike-and-Slab

βp ∼ rpN(0, c2p) + (1− rp)N(0, σ2p) (8)

rp ∼ Bernoulli(.5) (9)

• rp : selection variable

• N(0, σ2p) : a point mass function

(spike) commonly with a small

prior variance to shrink the

parameter to zero

• N(0, c2p) : the fuzzy prior (slab)

that is typically assigned a large

prior variance
spike-N(0, 0.001)

slab-N(0, 1)
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Horseshoe

βp ∼ N(0, ρ2pυ
2), ρp ∼ C+(0, 1), υ ∼ C+(0, 1) (10)

• ρp, υ : local and global shrinkage

parameters, respectively.

• Placing the half-Cauchy

distributions C+(0, 1) is similar to

putting a beta(0.5, 0.5) prior on

the shrinkage weight

κp = 1/(1 + ρ2pυ
2).
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Simulation Study



Purpose and Design

We conducted a simulation study with a similar design to

Jacobucci et al. (2019):

• Collinearity among covariates: 0, .2, .5, .8, .95

• Sample size: 100, 200, 300, 500, 1000
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Purpose and Design

Other Settings

• Effect Sizes:

β1 − β70 = 0, β71 − β80 = .2, β81 − β90 = .5, β91 − β100 = .8

• Factor loadings: c(1, .8, .8, .8, .5, .5)

• Residual variances of indicators and factor disturbance: 1

• Number of replications: 200 datasets per condition
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Model Estimation

Software: R, JAGS (Plummer, 2003)

Hyperparameters of priors for path coefficients:

• Diffuse prior: N(0, 1000)

• Ridge: N(0, 0.01) (Muthén & Asparouhov, 2012)

• Lasso and Alasso: αl = 1, βl = 0.01 (Chen et al., 2021)

• SSP: σ2p = 0.001, c2p ∼ IG(0.5, 0.5) (van Erp et al., 2019)

• Horseshoe: ρp ∼ C+(0, 1), υ ∼ C+(0, 1)

• Priors for other parameters (e.g., loadings): diffuse priors.

• Model convergence criteria: The estimated potential scale

reduction (EPSR; Gelman et al., 1996) value should be less

than 1.05 within 5,000 - 20,000 burn-in iterations.
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Evaluation Criteria

• Convergence Rate

• Rejection Rate of 95% Highest Posterior Density (HPD)

Interval

• Rejection Rate of Threshold: the proportion of converged

replications where | βest |>.1 (Feng et al., 2017)

• 95% Coverage Rate

• Relative Bias

• Root Mean Square Error (RMSE)√
1
N

∑N
i=1 (βest − βtrue)2 where N is the number of

converged replications
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Results: Convergence Rates

noreg: diffuse prior; collinearity: 0, .2, .5, .8, and .95

• Diffuse prior: low convergence rates (.21 - .63) with small

sample size

• Ridge, lasso, and SSP: excellent convergence rates

• Alasso and horseshoe: convergence rates decreased as the

collinearity increased
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Results: 95% HPD Rejection Rates

effect size: zero, low (.2), medium (.5), and high (.8) 21



Results: Threshold Rejection Rates
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Results: 95% Coverage Rate
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Results: RMSE
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Results: Relative Bias
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Results: Other Parameters

Diffuse prior with small sample sizes

• Unacceptable relative bias and RMSE for factor disturbance

• Low coverage rates for factor loadings
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Empirical Illustration



Data and Model

Data

• The third round of the European Social Survey

• Randomly selected 1,000 samples (45.5% male and 54.5%

female, Age: mean = 46.69, sd = 18.04)

Factor

• Center for Epidemiologic Studies - Depression Scale (CES-D,

Radloff, 1977)

• e.g., ”Felt depressed, how often past week”

• Eight items, 4-point Likert-type scale, treated as continuous

following Van de Velde et al. (2009).
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Multicollinearity

Forty-six covariates include demographic variables, health status,

family status, and portrait values

Correlation Heatmap for Covariates
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Hold-out Method

29



Results: Variable Selection and Parameter Estimation
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Results: Prediction
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Discussion



Penalty Priors vs Non-informative Priors

Variable selection

• Ridge has advantages in handling high collinearity.

• For low collinearity conditions, penalty priors except for ridge

performed better than diffuse prior in small sample sizes.

Parameter Estimation

• Penalty prior except for ridge outperformed the diffuse prior in

maintaining low RMSEs with small sample sizes.

Benefits of regularization in making predictions (empirical study)

and achieving model convergence (ridge, lasso, and SSP).
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Global Penalty vs Local Penalty

Convergence

• Global shrinkage has advantages in model convergence.

• Alasso and horseshoe yielded low convergence rates with the

co-existence of small sample size and high multicollinearity.

Variable Selection and Parameter Estimation

• Global shrinkage methods (ridge, lasso): variable selection.

• Methods with local shrinkage parameter: parameter

estimation.

• SSP and Horseshoe had a similar performance in most

conditions.
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Takeaway

Penalty priors compared to diffuse priors

• Robust results in small sample size conditions (simulation).

• High generalizability even with a relatively large sample size

(empirical study).

Choice of different penalty priors

• For variable selection: global shrinkage (e.g., ridge in high

collinearity conditions).

• For parameter estimation: penalty priors which include local

shrinkage.

• Model fit indexes (e.g., DIC).
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Thanks for listening!
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