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Introduction



Regularized Structural Equation Modeling (SEM)

Trade-off between model fitting and model complexity in SEM.

® Complex model - overfitting, less generalizability

® Simple model - omit important variables, poor model fitting

Regularization for achieving model parsimony and high
generalizability (e.g., Jacobucci & Grimm, 2018a).

® Shrink nuisance parameters toward zero & identify essential
parameters

® Retain accurate parameter estimates & improve the
generalizability of estimates



Bayesian Regularization

Bayesian regularization assigns penalty priors to regularize the

posterior distributions of parameters.

It is flexible in (Polson & Sokolov, 2019; van Erp et al., 2019):

® estimating the shrinkage parameters
® quantifying the uncertainty of parameter estimates

® handling small sample sizes



Bayesian Regularization

Different penalty priors:

¢ Ridge: global shrinkage

® Lasso (least absolute shrinkage and selection operator; Park &
Casella, 2008; Tibshirani, 1996): global shrinkage

® Adaptive lasso (alasso; Zou, 2006): local shrinkage

¢ Spike-and-slab prior (SSP; Mitchell & Beauchamp, 1988):
assign a discrete mixture of normal distributions on parameters

® Horseshoe (Carvalho et al., 2010): global-local shrinkage



Bayesian Regularized SEM

Methods = Measurement Models Structural Models
Ridge Muthén & Asparouhov (2012, 2013)
Lasso Chen et al. (2021), -

Pan et al. (2017),
Zhang et al. (2021);
Alasso Chen (2021), Feng et al. (2017),
Pan et al. (2021);  Jacobucci & Grimm (2018b),
Brandt et al. (2018);
SSP Lu et al. (2016) Brandt et al. (2018)
Horseshoe - -

Tabel 1: Integration of Different Penalty Priors with SEM



Method Comparison

Comparison Model
Chen et al. (2021) Ridge Lasso Measurement
Lu et al. (2016) Ridge SSP Measurement
Feng et al. (2017) Alasso Lasso Structural

Brandt et al. (2018) Alasso Alasso+SSP  Structural

Tabel 2: Comparison between Different Penalty Priors

® Lasso and SSP have advantages in achieving parsimonious
factor structures than ridge.

e Alasso has benefits in reducing appreciable bias caused by the
global lasso shrinkage.



Investigate the performance of different Bayesian regularization
methods in parameter estimation and variable selection using
MIMIC models:

® Penalty priors vs Non-informative prior
® Global vs Local vs Global-local shrinkage

¢ Under different modeling conditions (sample sizes,
multicollinearity, effect sizes)



MIMIC Models

Suppose there are K latent factors w measured by J indicators y
and regressed on P predictors X, a MIMIC model (Joreskog &
Goldberger, 1975) can be expressed as follows:

Vi=p+Aw; +€,i=1,2,...,n, (1)
wi = py, + BXi +0; (2)

® y; : observed values of J indicators for the i-th participant.
® p,p,, : vector of intercepts.

® A : factor loading matrix.

® w; : latent factors.

® €; : measurement errors.

® 3 : path coefficients.

® §, : factor disturbances.



MIMIC Models

The utility of MIMIC models is versatile (Finch & Miller, 2019)

e Control the influence of covariates on latent variables
® Test the measurement invariance between groups
¢ |dentify differential item functioning

X X, X3

|Y2 |}’3

MIMIC Model with One-factor and Six-indicators
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Bayesian Regularization



Bayesian Ridge

Bp ~ N(0,0%) (3)

® 3, : p-th parameter to be regularized.

00'2

: variance hyperparameter, determines the penalty strength.
® The prior variance can be fixed at a preassigned value such as
0.01 (Muthén & Asparouhov, 2012) or 0.001 (Jacobucci &

Grimm, 2018a), or be estimated through a hyperprior.
Applications

® |dentify cross-loadings and residual correlations (e.g.,
Falkenstrom et al., 2015)

® Handle small sample sizes (e.g., Crenshaw et al., 2016)

® Assess measurement invariance (e.g., de Bondt & van

Petegem, 2015) .



Bayesian Lasso

Bp ~ N(O,wag), Y, ~ Gamma(ow, B) (4)
2
7'5 ~ Gamma(1, %),72 ~ Gamma(ay, by) (5)

® 7, is included to obtain the desired
Laplace Distribution

Laplace distribution of the
conditional prior.

® v is the global penalty parameter. ' I
Applications

¢ |dentify cross-loadings and residual
correlations (Chen et al., 2021; Pan
et al., 2017; Zhang et al., 2021)
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Bayesian Adaptive Lasso

ﬁp ~ N(O, 1%75)7 ¢;1 ~ Gamma(awv IBw) (6)
A2
7'5 ~ Gamma(1, ?p),vg ~ Gamma(ay, by) (7)

® 7, : local penalty parameter.
Bayesian adaptive lasso has been extended to:

® SEMs with ordinal variables (Feng et al., 2017)
® Latent change score models (Jacobucci & Grimm, 2018b)

® Detect multiple linear and nonlinear effects in SEM with SSP
(Brandt et al., 2018)
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Spike-and-Slab

Bp ~ rpN (0, 012;) + (1 —7p)N(0, Ug) (8)

rp ~ Bernoulli(.5)

® 1, : selection variable

® N(0,07) : a point mass function
(spike) commonly with a small
prior variance to shrink the
parameter to zero

® N(0,c2) : the fuzzy prior (slab)
that is typically assigned a large
prior variance

(9)

Example of SSP

spike-N (0, 0.001)
slab-N (0, 1)
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Horseshoe

Bp ~ N(O>p72)U2)app ~ C+(07 1),v ~ C+(07 1) (10)

® pp,v : local and global shrinkage Horseshoe
parameters, respectively.

® Placing the half-Cauchy
distributions C*(0, 1) is similar to
putting a beta(0.5, 0.5) prior on

the shrinkage weight ]
fp = 1/(1+ p202). Jk

.....
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Simulation Study




Purpose and Design

We conducted a simulation study with a similar design to
Jacobucci et al. (2019):

® Collinearity among covariates: 0, .2, .5, .8, .95

® Sample size: 100, 200, 300, 500, 1000

Xy Xz X3 Xp Xp
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Purpose and Design

Other Settings

e Effect Sizes:

B1— Bro =0, Br1 — Bso = -2, Bs1 — Boo = -5, Bo1 — Proo = -8
® Factor loadings: ¢(1, .8, .8, .8, .5, .5)
® Residual variances of indicators and factor disturbance: 1

® Number of replications: 200 datasets per condition
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Model Estimation

Software: R, JAGS (Plummer, 2003)
Hyperparameters of priors for path coefficients:

Diffuse prior: N (0,1000)

Ridge: N(0,0.01) (Muthén & Asparouhov, 2012)

Lasso and Alasso: oy = 1, 6; = 0.01 (Chen et al., 2021)
S22 2

SSP: o5 = 0.001, c; ~ 1G(0.5,0.5) (van Erp et al., 2019)

Horseshoe: p, ~ CT(0,1),v ~ C*(0,1)

Priors for other parameters (e.g., loadings): diffuse priors.

Model convergence criteria: The estimated potential scale
reduction (EPSR; Gelman et al., 1996) value should be less
than 1.05 within 5,000 - 20,000 burn-in iterations.
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Evaluation Criteria

e Convergence Rate

® Rejection Rate of 95% Highest Posterior Density (HPD)
Interval

® Rejection Rate of Threshold: the proportion of converged
replications where | B¢t |[>.1 (Feng et al., 2017)

® 95% Coverage Rate
® Relative Bias
® Root Mean Square Error (RMSE)

\/% vazl (Best — Birue)? where N is the number of
converged replications

19



Results: Convergence Rates
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e Diffuse prior: low convergence rates (.21 - .63) with small

sample size
® Ridge, lasso, and SSP: excellent convergence rates

® Alasso and horseshoe: convergence rates decreased as the

collinearity increased
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Results: 95% HPD Rejection Rates
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Results: Threshold Rejection Rates
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Results: 95% Coverage Rate
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Results: RMSE

0 0.2 0.5 0.8 0.95
3
2
8
3
1 \
() o I ———— o — . T r— —— — v - e ——
3
2
= = Method
=]
2 z
(] ~—— noreg
o
- - e
£ — S e — e
7 lasso
£3
g3
51 = - alasso
=
32 Tossp
=]
=1 ]
& & ~ horseshoe
1
- -
0
3
2
- =4
g
E
1
AN . S bl
04—t = sscoe
100 300 500 1000100 300 500 1000100 300 500 1000100 300 500 1000100 300 500 1000

Sample Size

24



Results: Relative Bias
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Results: Other Parameters

Diffuse prior with small sample sizes

® Unacceptable relative bias and RMSE for factor disturbance

® |Low coverage rates for factor loadings
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Empirical lllustration




Data and Model

Data

® The third round of the European Social Survey
® Randomly selected 1,000 samples (45.5% male and 54.5%

female, Age: mean = 46.69, sd = 18.04)

Factor

¢ Center for Epidemiologic Studies - Depression Scale (CES-D,
Radloff, 1977)

® e.g., "Felt depressed, how often past week”

® Eight items, 4-point Likert-type scale, treated as continuous
following Van de Velde et al. (2009).
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Multicollinearity

Forty-six covariates include demographic variables, health status,
family status, and portrait values

Correlation Heatmap for Covariates o



Hold-out Method

One significant residual covariance was * Obtained the estimated factor scores (west)
detected using the blcfa package (Zhang et * Predicted factor scores (Wpredict)
al,, 2021) in both the training and test data. | ' « Evaluated prediction accuracy using R? and RMSE

Modification of
Splitthe Data [ 7 | — Train " Predict
Measurement Model

Training set: 2/3 of the ¢ Conducted MIMIC models with different

observations (667 cases) priors in the training set
Test set: 1/3 of the * Saved estimates and the selected predictors
observations (333 cases) * Model fitting: deviance information criteria
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Results: Variable Selection and Parameter Estimation
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Prediction

Correlation Among the Predicted Factor Scores and Estimated Values

R* RMSE
Non-informative  Ridge  Lasso  Alasso  Horseshoe  SSP
Non-informative - 171 0.642
Ridge 977" 181 0628
Lasso 921" 941" 191 0614
Alasso 948" 969 973" 181 0.621
Horseshoe 836" 853" 910" 904" 225 0598
SSP 920" 940" 999" 974" 925" 195 0616
Estimated Values 414" 426" 437 45 474 441"

Note. ** p<0.01.
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Discussion




Penalty Priors vs Non-informative Priors

Variable selection

® Ridge has advantages in handling high collinearity.

® For low collinearity conditions, penalty priors except for ridge
performed better than diffuse prior in small sample sizes.

Parameter Estimation

® Penalty prior except for ridge outperformed the diffuse prior in
maintaining low RMSEs with small sample sizes.

Benefits of regularization in making predictions (empirical study)
and achieving model convergence (ridge, lasso, and SSP).
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Global Penalty vs Local Penalty

Convergence

® Global shrinkage has advantages in model convergence.

¢ Alasso and horseshoe yielded low convergence rates with the
co-existence of small sample size and high multicollinearity.

Variable Selection and Parameter Estimation

¢ Global shrinkage methods (ridge, lasso): variable selection.

® Methods with local shrinkage parameter: parameter
estimation.

® SSP and Horseshoe had a similar performance in most
conditions.
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Penalty priors compared to diffuse priors

® Robust results in small sample size conditions (simulation).
® High generalizability even with a relatively large sample size
(empirical study).

Choice of different penalty priors

® For variable selection: global shrinkage (e.g., ridge in high
collinearity conditions).

® For parameter estimation: penalty priors which include local
shrinkage.

® Model fit indexes (e.g., DIC).
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Thanks for listening!
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