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Introduction



Cross-loadings in Confirmatory Factor Analysis

A general confirmatory factor analysis (CFA) model is specified as:

yi = µ+ΛFi + ϵi, i = 1, 2, ..., N, (1)

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12

F1 F2

Dashed line: Cross-loading; Solid line: Main loading
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Regularization

Ridge, Lasso, and Adaptive Lasso (alasso)

• Frequentist (Li & Jacobucci, 2021; Yuan & Liu, 2021)

• Bayesian (Chen et al., 2021; Lu et al., 2016; Muthén &

Asparouhov, 2012)

Comparison

• Equivalence.

• Uncertainty quantification.

• Estimation of penalty parameters.

• Model complexity and small samples.
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Frequentist Regularization for Selecting Cross-loadings

For a model with J cross-loadings λ to be regularized, Ridge,

Lasso and Alasso can be formulated as follows:

Fridge = FML + γ

√√√√ J∑
j=1

λ2j

Flasso = FML + γ

J∑
j=1

|λj |

Falasso = FML + γj

J∑
j=1

|λj |

(2)

• A greater value of penalty parameters (γ, γj ≥ 0) leads to increased

penalization.

• Models were selected using BIC or cross-validation.
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Bayesian Regularization: Penalty Priors

For the cross-loadings:

• Ridge:

λj ∼ N(0, σ2), σ2 ∼ Uniform(0, 1) (3)

• Lasso:

λj ∼ N(0, ψjjτ
2
j ), ψ

−1
jj ∼ Gamma(αj , βj) (4)

τ2j ∼ Gamma(1,
γ2

2
), γ2 ∼ Gamma(al, bl) (5)

Here, αj = βj = 0.01, al = 1, and bl = 0.01.

• Adaptive Lasso:

τ2j ∼ Gamma(1,
γ2j
2
), γ2j ∼ Gamma(al, bl) (6)
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Ridge, Lasso, Adaptive Lasso

• Frequentist (Jacobucci & Grimm, 2018; Liang & Jacobucci,
2020; McNeish, 2015)

• Ridge is advantageous in handling high collinearity.
• Lasso performed better in shrinking nuisance parameters into

zero compared to ridge.
• Alasso can reduce the bias compared to Ridge and Lasso

• Bayesian
• Ridge is advantageous in handling high collinearity (Zhang &

Liang, 2023)
• Lasso performed better in maintaining a simple loading

structure compared to Ridge (Chen et al., 2021)
• Alasso performed better in variable selection and estimation

accuracy compared to Lasso (Feng et al., 2017)
• Alasso performed better in detecting non-zero residual

correlations compared to Lasso (Pan et al., 2021)
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Purpose

• Investigate the similarity and differences in point estimates

and variable selection when applying ridge, lasso, and alasso in

both frequentist and Bayesian frameworks.

• Explore the strengths and limitations of various regularization

methods under frequentist and Bayesian frameworks.
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Simulation Study



Design

• Model structure: two- and three-factor models.

The loading matrices for the two- and three-factor models:

• Major loadings: 1

• Number of non-zero cross-loadings per factor: 1 or 2

• Magnitude of non-zero cross-loadings: 0.1, 0.2, 0.3

• Factor correlation: 0.3, 0.5, 0.7

• Sample size: 200, 500, 800
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Frequentist Estimation

The regsem package (Jacobucci, 2017): models were selected using

BIC for γ, γj from 0 to 0.29 with a .01 increment.

Penalty cannot be assigned to all cross-loadings, otherwise the

model would not converge.

So we assume that there are at least one item per factor loaded on

only one factor, and assign penalty on the cross-loadings with

C−marks:
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Bayesian Estimation

For the main loadings, intercepts, and factor variance-covariance

matrix, diffuse priors were assigned:

λmj ∼ N(λ0, Hλ0), µj ∼ N(µ0, Hµ0),Φ
−1 ∼Wishart(R0, ρ0)

(7)

where λ0 = µ0 = 0, Hλ0 = Hµ0 = 1000, R0 is the identity matrix

and ρ0 is the number of factors plus one.

• Number of burn-in iterations were set between 5,000 - 20,000.

• Model Convergence Criteria: EPSR value < 1.05.

• Software: R, JAGS (Plummer, 2003)

10



Evaluation Criteria

200 datasets per condition.

• Parameter selection (Thresholding rule: for frequentist
regularization: |β| > 0; for Bayesian regularization: |β| > 0.1;
Zhang, Pan, & Ip, 2021):

• Power
• Type I error rate

• Parameter Estimation (For Bayesian estimation, median of
posterior samples was used as point estimate):

• Relative bias
• Root mean square error
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Results: Power
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Results: Type I Error Rates
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Results: Relative Bias

0.1 0.2 0.3

0.3 2

0.5 2

0.7 2

0.3 3

0.5 3

0.7 3

200 500 800 200 500 800 200 500 800

−0.75
−0.50
−0.25

0.00

−0.75
−0.50
−0.25

0.00

−0.75
−0.50
−0.25

0.00

−0.75
−0.50
−0.25

0.00

−0.75
−0.50
−0.25

0.00

−0.75
−0.50
−0.25

0.00

Sample Size

R
el

at
iv

e 
B

ia
s

Method

bridge

fridge

blasso

flasso

balasso

falasso

14



Results: Root Mean Square Error
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Discussion



Method Comparison

• Frequentist methods generally provide greater power but may
also encounter inflated type I error rates, particularly for ridge.

• However, note that different thresholds were used for

frequentist and Bayesian methods.

• Bayesian regularization generally performed better in

parameter estimation (lower bias and RMSE).

• Frequentist alasso exhibited lower power in general, while

showed improved parameter estimates with increasing sample

size, compared to ridge and lasso.

• Bayesian alasso outperformed Bayesian ridge and lasso in

most conditions, particularly in the three-factor model.
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Takeaways

• Frequentist methods generally offer higher power in detecting

cross-loadings, while Bayesian methods excel at controlling

type I errors

• Use Bayesian Alasso for Lower Bias and RMSE

• Exercise caution about Type I error rates when using

Frequentist Ridge and Lasso.

• Findings may vary depending on sample size, model

complexity, and the chosen threshold.
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Thank you for listening!

Lijin Zhang: lijinzhang@stanford.edu

Xinya Liang: xl014@uark.edu

Junhao Pan: panjunh@mail.sysu.edu.cn
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