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Growth Curve

▶ Tracking changes over time is vital for understanding the
nature of development in abilities, personality, behavioral
problems, and more.
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Growth Curve Modeling (GCM)

▶ GCM is a powerful approach for tracing and describing
patterns of change over time.

▶ A beauty of GCM lies in its ability to encapsulate both
individual change and population trends.

▶ Linear Growth Curve Model

ynt = in + sln · (t− k)+ ϵnt , n = 1, . . . ,N, t = 1, . . . ,T (1)

▶ ynt : Response of individual n at time t

▶ in: Intercept for the individual n

▶ sln: Linear slope

▶ ϵnt : Measurement error of ynt , ∼ N(0, ψt)
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Quadratic Growth Curve Model

▶ If a linear growth curve does not fit well and a non-linear
trend emerges from the longitudinal plot, researchers might
opt for the quadratic growth model:

ynt = in + sln · (t − k) + sqn · (t − k)2 + ϵnt (2)
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Quadratic Growth Curve Model

ynt = in + sln · (t − k) + sqn · (t − k)2 + ϵnt (3)

If we assume t = 1, 2, . . . , 7 and k = 1, the loading matrix Λ
linking the latent and observed variables:

Λ =



1 0 0
1 1 1
1 2 4
1 3 9
1 4 16
1 5 25
1 6 36


(4)
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Time Intervals

▶ A growth curve model does not require the measurement to
be equally spaced.

▶ Consider the scenario where measurements are taken in the
1st, 3rd, 6th, and 7th years.

Λ =


1 0
1 2
1 5
1 6

 (5)
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Assumption

▶ Measurements should be conducted strictly at pre-set time or
intervals.

▶ Specifically, the measurement time for each participant should
be exactly maintained as designed.
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Measurement Error in Time

▶ This error can be broadly classified into two types: systematic
and random.

▶ Systematic errors could be attributed to minor deviations from
an ideal measurement schedule.

▶ Random errors might arise from the duration of the data
collection process.

▶ Very common in real-world analysis, but the traditional model
does not account for this error, assuming that all
measurements strictly adhere to the pre-defined interval.
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Aims

▶ Investigate the consequences of ignoring the measurement
error in time.

▶ Develop a model that can integrate prior knowledge to handle
error in time.
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Modeling Error in Time

▶ tnt denotes the recorded time value for
the n-th individual at the t-th time point.

▶ t∗nt is the true time value.
▶ ent is the measurement error in time.
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Known t∗nt

When the individual time values are known (tnt = t∗nt), t
∗
nt can be

directly included into the model as a regular model such as:

ynt = in + sln · (tnt − k) + sqn · (tnt − k)2 + ϵnt (6)

The individualized loading matrix Λn:

Λn =


1 tn1 − k (tn1 − k)2

1 . . . . . .
1 tnt − k (tnt − k)2

1 . . . . . .
1 tnT − k (tnT − k)2

 (7)
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Unknown t∗nt

When the true individual time information is unavailable, we
proposed to model t∗nt as an unobserved variable.

We anchor k and t∗1n at 1 to help interpret the intercept parameter
as the initial status for each individual.

We use Bayesian estimation to assign priors to t∗nt starting from
the second time point, which are centered around µt :

ynt = in + sln · (t∗nt − 1) + sqn · (t∗nt − 1)2 + ϵnt

t∗nt ∼ TN(µt , τ
2
r , t − 0.99, t + 0.99), µt ∼ N(t, τ2s ), for t = 2, . . . ,T

ϵnt ∼ N(0, ψt)

Xn ∼ MVN
([

µi µsl µsq
]T
,Φ

)
,Xn =

[
in sln sqn

]T
(8)
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Modeling Error in Time

▶ This approach incorporates the prior knowledge about the
measurement schedule and addresses the error in time by
modeling t∗nt .

▶ The time t∗nt is approximately fixed at t but allows slight
variations.

▶ This greatly simplifies the interpretation of the slopes.
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Simulation Studies

▶ Simulation 1: Consequences of Ignoring the Measurement
Error in Time

▶ Simulation 2: Growth Curve Modeling with Known t∗nt

▶ Simulation 3: Growth Curve Modeling with Unknown t∗nt

Bayesian GCM Lijin, Wen, Johnny 14/33



Simulation Study 1

Consequences of Ignoring the Measurement Error in Time.

True Model:
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Design

▶ The means of time (µt). Two scenarios were considered:
µt0 = (1, 2, 3, 4, 5, 6, 7), and an alternate sequence
µt1 = (1, 2.1, 2.9, 4.1, 4.9, 6.1, 6.9) with systemic derivation
from µt0.

▶ The standard deviations (τr ): 0, 0.1, 0.2, 0.3.

▶ Latent means for the intercept and slopes were set at 1 and
0.2 / 1 and 0.5, respectively.

▶ The residual variances for ynt were established as either 1 or 4.

▶ Sample size: 250 and 500.

We simulated each condition of the combined factors 100
times.
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Model Estimation

For the latent means, the variance-covariance matrix of the latent
variables, and the residual variances of observed variables, we
assigned either diffuse or weakly informative priors.

For example, priors for the quadratic growth curve model: in
sln
sqn

 ∼ MVN

 µiµsl
µsq

 ,Φ


µi , µsl , µsq ∼ N(0, 10)

Φ−1 ∼ Wishart(I , 3)

ψ−1
t ∼ Gamma(1, 1)

(9)
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Model Estimation

▶ Software: JAGS

▶ Two MCMC chains were generated for convergence check and
model estimation.

▶ Burn-in phase: 5,000 - 100,000 iterations.

▶ If the model converged within 100,000 iterations (EPSR <
1.1), 5,000 more iterations would be generated for estimation.

Results: High convergence rate (>95%) and power for latent
means (>90%) across all modeling conditions.
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Linear Growth Curve - Relative Bias
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Slight increase in RB when time-based errors are present. However,
these values still fall within an acceptable range (10%).
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Quadratic Growth Curve - Relative Bias
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Summary

▶ The measurement error in time seems to be captured by the
residual error ϵnt of ynt in the linear growth curve model,
thereby having little influence on other parameter estimates.

ynt = in + sln · (t − k) + ϵnt (10)

▶ As τr increased under the µt0 conditions, the relative bias of
µsl , ϕi ,sl , andϕsl ,sq increased.

▶ When there were systematic deviations from the measurement
schedule, considerable bias emerged (with |RB| > 0.1) for
almost every parameter, except for µi .
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Simulation Study 2

Models Comparison: Fixed t (traditional model) vs Known t∗nt

▶ In practical scenarios, responses can be precisely timed, often
through online surveys.

▶ We selected two conditions from the simulation study 1 where
N = 500, τr = 0.2 and µsl = µsq = 0.2.

▶ We varied the average response times: µt = µt0 or µt1.

▶ We saved the true individual time values from data generation
for subsequent estimation.
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Results
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Simulation Study 3

▶ We varied two factors in data generation, including:

1 The average response times, denoted as µt , were set to either
µt0 = (1, 2, 3, 4, 5, 6, 7) or µt1 = (1, 2.1, 2.9, 4.1, 4.9, 6.1, 6.9);

2 The standard deviation, τr , was set to either 0 or 0.2.

▶ All other settings were consistent with those of study 2 (e.g.,
µsl = µsq = 0.2, N = 500).

▶ Model comparison: Fixed t vs Unknown t∗nt

▶ For the parameters τr and τs , we utilized hyper-priors to
derive their values:

t∗nt ∼ TN(µt , τ
2
r , t−0.99, t+0.99), µt ∼ N(t, τ2s ), for t = 2, 3, . . . , 7

τ−2
r ∼ U(100, 10000), τ−2

s ∼ U(1000, 10000)(11)
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Results
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Model Selection

▶ We further evaluated how the DIC (Deviance Information
Criterion) differentiates between the two models.

▶ For every replication, we used the DIC to identify the model
with a better fit, as indicated by a lower DIC value.

Table: Model Selection Rates between Model t and Model t∗nt using DIC.

µt0 µt1

t t∗nt t t∗nt
τr = 0 0.59 0.41 0 1
τr = 0.2 1 0 0.17 0.83
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Empirical Data

▶ Early Childhood Longitudinal Study—Kindergarten (ECLS-K).

▶ We extracted 500 samples of the math IRT (Item Response
Theory) scale scores from five waves of the ECLS-K: the fall
of kindergarten, and the spring of kindergarten, 1st, 3rd, and
5th grades.

▶ The ECLS-K study extended over many years in different US
locations.

▶ This makes it challenging to ensure consistent measurement
intervals for each individual, which could result in the
measurement error in time.

Bayesian GCM Lijin, Wen, Johnny 27/33



Trajectory Plot

▶ We set the time interval unit as one semester.

▶ Five waves: the first, second, fourth, eighth, and twelfth
semesters.
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Model Comparison

▶ The first model had a fixed loading matrix:

Λ =


1 0 0
1 1 1
1 3 9
1 7 49
1 11 121

 (12)

▶ The second model integrated the unknown t∗nt and allowed
slight deviations from the designed measurement schedule:

t = 2, t∗n2 ∼ TN(µ2, τ
2
r , 1.01, 2.99), µ2 ∼ N(2, τ2s )

t = 4, t∗n4 ∼ TN(µ4, τ
2
r , 3.01, 4.99), µ4 ∼ N(4, τ2s )

t = 8, t∗n8 ∼ TN(µ8, τ
2
r , 7.01, 8.99), µ8 ∼ N(8, τ2s )

t = 12, t∗n,12 ∼ TN(µ12, τ
2
r , 11.01, 12.99), µ12 ∼ N(12, τ2s )

τ−2
r , τ−2

s ∼ U(1000, 10000)
(13)
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Priors

▶ Echoing the simulation study, we utilized diffuse or weakly
informative priors for other parameters in both models:

µi ∼ N(20, 100), µsl , µsq ∼ N(0, 100)

Φ−1 ∼ Wishart(I , 3), ψ−1
t ∼ Gamma(1, 1)

(14)

▶ Two MCMC chains were generated, with 50,000 iterations for
burn-in and another 50,000 for inference. Both models
reached convergence within the burn-in phase (EPSR < 1.1).
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Results
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Takeaways

▶ Ignoring the measurement error in time can lead to biased
results in quadratic growth curve modeling.

▶ The proposed model introduces underlying individual time
values that exist behind the preset measurement schedule.

▶ It outperforms the traditional model that ignores time errors
in terms of estimation accuracy.

▶ Even in the absence of time errors, this model continues to
provide excellent performance with acceptable bias.
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Thanks for Listening!

Slides:
https://lijinzhang.com/share/230831_gcm.pdf
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