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A Partially Confirmatory Approach to Scale Development With the
Bayesian Lasso

Jinsong Chen, Zhihan Guo, Lijin Zhang, and Junhao Pan
Sun Yat-Sen University

Abstract
The exploratory and confirmatory approaches of factor analysis lie on two ends of a continuum of
substantive input for scale development. Recent advancements in Bayesian regularization methods enable
more flexibility in covering a wide range of the substantive continuum. Based on the Bayesian Lasso
(least absolute shrinkage and selection operator) methods for the regression model and covariance matrix,
this research proposes a partially confirmatory approach to address the loading and residual structures at
the same time. With at least one specified loading per item, a one-step procedure can be applied to figure
out both structures simultaneously. With a few specified loadings per factor, a two-step procedure is
preferred to capture the model configuration correctly. In both cases, the Bayesian hierarchical formu-
lation is implemented using Markov Chain Monte Carlo estimation with different Lasso or regular priors.
Both simulated and real data sets were analyzed to evaluate the validity, robustness, and practical
usefulness of the proposed approach across different situations.

Translational Abstract
Exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) are traditional approaches for
development of psychological scales, and each has pros and cons. EFA is driven by data, whereas CFA
is driven by theory. However, different amounts of substantive knowledge are available to analyze the
factor structure of a scale, so the approaches become two ends of a continuum. Although it is desirable
to cover a wide range of the continuum in practice, there are psychometric challenges in combining EFA
and CFA within one framework. Relying on Bayesian Lasso methods and sound statistical modeling, this
research proposes a partially confirmatory factor analysis (PCFA) approach to address the challenges.
With a two-step procedure, the proposed approach can offer more flexibility to scale development,
especially when there are multiple factors and many items. Using both simulation experiments and real
data sets related to mathematics learning and humor style questionnaires, this article shows that PCFA
can help researchers better develop scales with both exploratory and confirmatory elements across
different settings.

Keywords: factor analysis, Bayesian Lasso, partially confirmatory, Lasso loading, residual covariance

Factor analysis (FA) is a statistical technique widely used for
developing psychological scales with multiple factors and many
items. The major purpose is to explain item responses in term of

the structure of the factorial loadings and residuals. With FA, there
are two typical approaches of scale development: exploratory
(EFA; Jennrich & Sampson, 1966) and confirmatory (CFA; Jöres-
kog, 1969). EFA is data driven with little substantive knowledge or
constraint on the loading structure, whereas CFA is theory driven
with strong knowledge or constraint on the structure. In general,
however, different amounts of substantive input can be available,
making the two approaches two ends of a continuum. To be more
flexible on the substantive continuum, one traditional practice is to
apply post hoc model modification (PMM) based on modification
indices (Kaplan, 1990; Sörbom, 1989) to free up constraints on the
basis of the confirmatory approach. However, PMM is theoreti-
cally suboptimal and will be problematic when many constraints
need to be released (Bentler, 2007; MacCallum, 1986; Steiger,
1990).

With the recent development of Bayesian regularization meth-
ods such as Bayesian ridge regression (Hsiang, 1975), Bayesian
least absolute shrinkage and selection operator or Lasso (Hans,
2009; Park & Casella, 2008), and spike-and-slab prior (O’Hara &
Sillanpää, 2009), it is increasingly possible to achieve more flex-
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ibility on the substantive continuum in scale development using
FA. Specifically, cross-loadings can be regularized via the Bayes-
ian structural equation modeling (BSEM) approach with the ridge
regression prior (B. O. Muthén & Asparouhov, 2012) or spike-
and-slab prior (Lu, Chow, & Loken, 2016). Regularization of
off-diagonal elements in the residual variance-covariance matrix
can be conducted via the Bayesian covariance Lasso for CFA
(BLCCFA) approach (Pan, Ip, & Dubé, 2017). Studies have also
demonstrated the superiority of Bayesian methods over PMM for
identifying significant cross-loadings or residual covariance in
corresponding settings. The methods all offer variable selection
with different norms of penalty on the parameters of interests,
Bayesian hierarchical modeling with the Markov Chain Monte
Carlo (MCMC; Gilks, Richardson, & Spiegelhalter, 1996) algo-
rithm, and simultaneous estimation of the shrinkage parameters
with proper priors.

On the basis of previous literature, this research proposes a
partially confirmatory factor analysis (PCFA) approach with the
Bayesian Lasso method to address the loading and residual cova-
riance structures. Addressing both structures at the same time is
challenging, and some constraints can be used. With the constraint
of one specified loading per item, a one-step procedure can be
applied to capture the loading and residual covariance structures
simultaneously. Otherwise, an additional step with a few specified
loadings per factor and diagonal residual matrix can be used to
satisfy the constraints before applying the above step, making it a
two-step procedure. In both cases, the MCMC estimation is im-
plemented based on derivations with different Lasso or regular
priors on the loading and residual structures. Both the Gibbs
sampler (Casella & George, 1992; Geman & Geman, 1984) and
Metropolis-Hastings algorithm (Hastings, 1970; Metropolis,
Rosenbluth, Rosenbluth, Teller, & Teller, 1953) are used in the
MCMC estimation. Note that the one-step procedure reduces to the
BLCCFA approach when all loadings are specified or fixed,
whereas the first step in the two-step procedure is similar to the
BSEM approach but with different regularization methods. With
the two procedures, the proposed approach can cover a wide range
of the substantive continuum and be flexible and useful for scale
development, especially with three or more factors and many
items. Both simulated and real data sets were analyzed to evaluate
the validity, robustness, and practical usefulness of the proposed
approach across different situations.

The Partially Confirmatory Framework

Suppose there are J items in a psychological scale with N
respondents, and item responses y1, y2, . . . , yN are independently
and randomly distributed observations. In a general FA model,
each yi � (yi1, yi2, . . . , yiJ)

T satisfies the following equation:

yi � � � ��i � �i, i � 1, 2, . . . , N, (1)

where model parameters include the J � 1 intercept vector �
(usually of little interest during scale development), J � K loading
matrix � � (�jk), K � K factorial covariance matrix �, and J �
J residual covariance matrix � � (�jj=), with K � 1 latent factors
�i � NK[0, �] and J � 1 residuals �i � NJ[0, �]. To determine
the scale of the latent factors, one can either fix the factorial
variance or fix one loading per factor. In this research, all factorial
variances are fixed to one, which means � is a correlation matrix.

Loadings in � can be fixed to zero (based on substantive knowl-
edge), specified as free to estimate (also based on substantive
knowledge), or unspecified (learned through regularization). With
different combinations of zero-fixed, specified, and unspecified
loadings, different amounts of substantive input can be trans-
formed into different structures of the loading matrix of �.

In EFA, both the number of factors and structure of � are
unknown and of primary interest. This means all loadings are
unspecified. Moreover, � is modeled as a diagonal matrix, and the
accuracy of loading and � estimates is secondary. The model is
usually underidentified and cannot be estimated with traditional
algorithms such as the maximum likelihood estimation. Instead,
purely data-driven techniques such as principal component analy-
sis, subjective criteria such as eigenvalue, and rotation are adopted
to obtain a small number of factors and a simple structure for the
loading matrix. In CFA, the number of factors and the structure of
� are given based on theory-driven hypothesis. This means that all
loadings are either zero or specified. Free elements in � and � are
of primary interest. � can be nondiagonal, with usually a few
nonzero off-diagonal elements, which are nuisance parameters
imposing challenges for model estimation and fitting. Under cer-
tain conditions, the model is overidentified and can be estimated
with traditional methods (see, e.g., Kaplan, 2009).

The framework becomes essentially exploratory when all load-
ings are unspecified, and confirmatory when all loadings are either
zero-fixed or specified. More generally, developers can designate
some loadings as zero or specified while keeping others as un-
specified in the framework, which means the loading matrix is
partially specified. A typical PCFA model with two factors and 10
items can be found in Figure 1, where there is one specified and
unspecified loading per item. Note that all residuals are allowed to
correlate with each other in the figure. However, two thorny issues
need to be addressed before the framework can be useful: the
accommodation of both specified and unspecified loadings, and
the identification of nonzero off-diagonal elements or residual
correlations in �. The Bayesian Lasso can address both issues.

The Bayesian Lasso Approach

Bayesian Regression and Covariance Lasso

The issues of both unspecified loadings and a residual covari-
ance matrix can be addressed based on variable selection with the
Bayesian Lasso. For a regression model with p predictors � � (�1,
. . . , �p)T and responses

y � �1n � X� � ε, (2)

the Lasso estimates are least squares estimates with L1 norm
penalty (Tibshirani, 1996):

�̂ � argmin
�

�(ỹ � X�)T(ỹ � X�) � ��
j�1

p

| �j | � (3)

where X is the standardized regressors, ỹ � y � y�1n, � is the
residual term, and � � 0 is the tuning parameter that determines
the amount of shrinkage. The Bayesian Lasso estimates accom-
plish the same goals as the frequentist counterpart by choosing
appropriate forms of prior distributions that play the role of the
penalty in Equation 3. In a fully Bayesian approach with a hier-
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archical formulation (Park & Casella, 2008), hierarchical priors
can be applied and, as a result, the priors of the predictors follow
the double exponential (i.e., Laplace) distributions with the shrink-
age parameter. With hyperpriors and the MCMC algorithm, the
shrinkage parameter can be estimated simultaneously with other
parameters.

The Bayesian regression Lasso has been extended to address
covariance structure with sparse off-diagonal terms bounded away
from zero (Khondker, Zhu, Chu, Lin, & Ibrahim, 2013; Wang,
2012). Specifically, the L1 norm penalty is applied to the inverse of
the covariance matrix with the graphical Lasso. Double exponen-
tial priors with similar shrinkage parameters are used for the
off-diagonal elements while independent exponential priors can be
used for the diagonal terms. With hyperparameters for the priors
and an adapted MCMC algorithm, the Bayesian covariance Lasso
is successfully implemented to address a sparse residual covari-
ance structure under the CFA context (Pan et al., 2017).

The Confirmatory Steps

In PCFA, the loadings in one item can be zero, specified, or
unspecified. For a specific item, the latent factors and loading
vector in Equation 1 can be rearranged so that the zero or specified
loadings and unspecified loadings can be partitioned. Denote the

K � 1 loading vector for item j as �j � ��j�

�j
� �, where �j

T is the jth
row of � and j � 1, 2, . . . , J. The K= � 1 vector �j� and K	 � 1
vector �j

� are the zero or specified and unspecified parts, respec-
tively. All unspecified loadings are estimated with Bayesian Lasso
and are called Lasso loadings in this research. Similar to Bayesian
regression Lasso, different priors can be assigned to Lasso load-
ings in hierarchical form, as

�j
� � NK�(0, D	j

),

D	j � diag�	j1
2 , . . . , 	jK�

2 �,

	jk
2 � Gamma�1,

�l
2

2
	,

(4)

where k � 1, 2, . . . , K	 and �l is the shrinkage parameter. Note that
an individual parameter can be set to shrink each item j, but the
difference of regularization is trivial. Here one shrinkage param-
eter is used for simplicity of discussion. The hierarchical priors
form a double exponential distribution with the L1 norm penalty,

which can maintain conjugacy of the posterior distribution. The
explicit form of the full conditional distribution can be obtained, as
shown in Appendix A, which can be directly sampled from using
the Gibbs sampler. Hyperpriors can be assigned to �l as �l

2 �
Gamma(al, bl) and the common choices for hyperparameters are 1
for al and a small bl. For specified loadings, conjugate prior
distribution �j� � NK���0j, H0j� can be assigned with �0j and H0j

as hyperparameters, which can also lead to an explicit full condi-
tional distribution (Lee, 2007). If needed, a conjugate prior for the
intercept vector can be assigned as � � Nj(�0, H
0), with �0 and
H�0 as hyperparameters and an explicit full conditional distribu-
tion for sampling.

The residual covariance matrix in a partially confirmatory
model is not necessarily diagonal. The entire � can be modeled as
a sparse structure on off-diagonal elements with the Bayesian
covariance Lasso. Denote 	 � ��1 � (�jj=)J�J. Double exponen-
tial priors can be assigned to the off-diagonal elements, which has

the form
�s

2 exp���s 
 �jj� 
 � with j  j=, whereas independent
exponential priors can be assigned to the diagonal elements with

the form
�s

2 exp���s

2 �jj� (Wang, 2012). The full conditional distri-
bution can be obtained and directly sampled from using a block
Gibbs sampler. Hyperpriors can be assigned to the shrinkage
parameter �s as �s � Gamma(as, bs) and the common choices for
hyperparameters are 1 for as and a small bs. The related full
conditional distributions are presented in Appendix C.

The factorial correlation matrix is also estimated by adapting the
relevant MCMC algorithms (Liu, 2008; Liu & Daniels, 2006).
However, an explicit form of the full conditional distribution for
the factorial correlation matrix � cannot be easily obtained and
directly sampled from. Instead, one can first sample from the
original covariance matrix �� with conjugate prior �� � Inv-
Wishart(S0, v0) and then transform the sampled �� into corre-
sponding � with the reduction function � � D�1��D�1, where
D is an expansion parameter matrix. The provisional � is accepted
based on a Metropolis-Hastings acceptance probability, which is
computed by comparing the determinant of the correlation matrix
obtained from the previous draw and current draw. Liu (2008) and
Liu and Daniels (2006) provide more details on how to sample the
correlation matrix �.

It is challenging to estimate a partially specified loading matrix
and a residual covariance matrix with off-diagonal elements si-

Specified

Unspecified

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

F1 F2

Figure 1. A C-step example in PCFA with two factors and 10 items.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

3PCFA SCALE BAYESIAN LASSO



multaneously. The PCFA model can be especially problematic
when there are too many unspecified or Lasso loadings. Specifi-
cally, we found that parameter estimates are unstable or difficult to
converge if there is no specified loading for many items. This
research imposed a constraint of having at least one specified
loading per item, although it might be fine if there are a few items
without any specified loading. The constraint is meaningful sub-
stantively since there is usually a target factor for every item
during scale development. The specified loading can be the major
loading under the BSEM context (B. O. Muthén & Asparouhov,
2012) or any other loading that the developer is confident to
specify. With the constraint of one specified loading per item, the
formulation tends to be confirmatory and is called the confirma-
tory step (C-step) in PCFA. Figure 1 gives an example of the
C-step with two factors, 10 items, and one specified loading per
item. Note that item residuals are allowed to completely correlate
with each other under the Bayesian Lasso covariance estimation.
When all loadings are specified, the C-step is essentially the
BLCCFA (Pan et al., 2017), with a minor difference of fixing the
factorial variance rather than having one item per factor for scale
indeterminacy.

The Exploratory Step

When no loading can be specified for many items, the above
constraint can be released by modeling � as a diagonal matrix or
ignoring any residual correlation. The loadings in � can be mostly
unspecified given there is at least one specified loading per factor to
identify the factor. For more stable performance, more specified
loadings per factor are preferred. The hierarchical priors of the un-
specified loadings conditional on the diagonal residual terms become:

�j
�|�jj � NK�(0, �jjD	j

),

�jj
�1 � Gamma(a0j, b0j),

D	j � diag�	j1
2 , . . . , 	jK�

2 �,

	jk
2 � Gamma�1,

�l
2

2
	,

(5)

where �jj is the jth diagonal term of �, and the priors for the
shrinkage parameters �l are similar to the C-step. The explicit full
conditional distribution can be obtained (see Appendix B) and
directly sampled from using the Gibbs sampler. Other parameter
estimates are the same as the C-step above, except that there is no
off-diagonal element in the residual covariance matrix. This is

similar to the BSEM approach, but with the Lasso method rather
than the ridge regression or spike-and-slab priors (Lu et al., 2016;
B. O. Muthén & Asparouhov, 2012). Parameter estimates are
deemed biased when the true residual structure is not diagonal, but
it would suffice to identify at least one specified loading per item
for the C-step. Because the formulation tends to be exploratory
especially compared with the previous step, it is called the explor-
atory step (E-step) in PCFA. Figure 2 gives an example of the
E-step with two factors, 10 items, and two specified loadings per
factor. Note that there is no off-diagonal element in the residual
structure.

Markov Chain Monte Carlo Estimation

Graphical representations of the hierarchical structure of the C-step
and E-step are presented in Figures 3 and 4, respectively. The figures
show how the item responses Yij can be modeled using latent factors,
loadings, and residuals, which are characterized by their mean, cova-
riance structure, and shrinkage parameters in a hierarchical form. The
Bayesian hierarchical structure can be estimated using MCMC, which
is a simulation-based algorithm that iteratively resamples from the
probability distributions based on a stochastic process of Markov
chains (Gill, 2002). Under mild regularity conditions, the Markov
chains will converge to a stationary posterior distribution after a
sufficiently large number of iterations called the burn-in period. Two
types of MCMC are used: the Gibbs sampler (Casella & George,
1992), which is easier to implement but requires the explicit full
conditional distributions, and the Metropolis-Hastings algorithm
(Chib & Greenberg, 1995), which relies only on the joint posterior
distribution. Except for the factorial correlation matrix �, which is
estimated using the Metropolis-Hastings algorithm as described
above, all model parameters are estimated using the Gibbs sampler or
block Gibbs sampler.

The procedure for sampling the parameters of interest from their
full conditional distributions has six steps:

Step 1: Draw 
 from p(
 | Y, �, �, �, �);
Step 2: Draw �j

� from p��j
� 
Y, ��j, 
, �, �, �, �lj� for j � 1 to J;

Step 3: Draw �j� from p��j� 
 Y, ��j, 
, �, �, �� for j � 1 to J;
Step 4: Draw � from p(� | Y, 
, �, �, �), if needed;
Step 5: Draw � from p(� | Y, 
, �, �, �);
Step 6: Draw 	 from p(	 | Y, �, 
, �, �, �s) for the C-step, or

p(	 | Y, �, 
, �, �) for the E-step, and compute � � 	�1.
Multiple chains with different initial values can be run to mon-

itor the convergence of the algorithm. After the burn-in period, the

Specified

Unspecified

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

F1 F2

Figure 2. An E-step example in PCFA with two factors and 10 items.
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convergence for the parameters of interest can be determined using
the estimated potential scale reduction (EPSR) value (Gelman,
1996). The EPSR value compares the ratio of the weighted average
of the within-chain variance and between-chain variance to the
within-chain variance. The chains are said to converge to the
stationary distribution if this ratio is less than 1.1 (Gelman,
Carlin, Stern, & Rubin, 2004). In this research, we found that all
chains had reached stationary status within 8,000 iterations and
then set the burn-in as 10,000 iterations for all subsequent
studies. After the burn-in phase, parameter estimates are infer-
enced based on 10,000 and 20,000 draws for the simulation and
real-data analyses, respectively. The uncertainty of estimates is
characterized with the concept of highest posterior density
(HPD) intervals, or more specifically the 100(1 � �)% HPD
interval (Box & Tiao, 1973). Both the EPSR value and HPD
interval can be obtained with the R package coda (Plummer,
Best, Cowles, & Vines, 2006). All programming was conducted
on the R platform (R Development Core Team, 2010). Finally,

two sets of prior values were evaluated for sensitivity analysis
in a preliminary study, as shown in Table 1, and the difference
turned out to be trivial. We adopted the first set of values for
subsequent analyses, which was less informative.

Empirical Studies

Study 1: Performance in a Relatively Simple Case

Study 1 evaluated the performance of the E-step and C-step in
a relatively simple case with two factors and 10 items, namely, J �
10 and K � 2, through a simulation study. The factorial correlation
was �12 � �21 � .3; the loading matrix was

�T � �11 21 31 41 51 61 0 0 0 0

0 0 0 0 52 62 72 82 92 10,2
�,

with �11 � �21 � �31 � �41 � �72 � �82 � �92 � �10,2 � .7,
�51 � �61 � �52 � �62 � .5, and all other loadings �0 � 0. For

Figure 3. A directed acyclic graph for the C-step.

Figure 4. A directed acyclic graph for the E-step.
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the residual structure in �, the diagonal elements were �jj � .51
for j � 1 to 4 and 7 to 10 and �jj � .35 for j � 5 and 6, and the
nonzero off-diagonal elements were �12 � �21 � �74 � �47 � .3
with all other off-diagonal elements �0 � 0. Two levels of sample
sizes were simulated, with N � 250 and 500, and the number of
replications was 200 for each sample size.

For the E-step recovery, a PCFA model with two specified
loadings per factor was fitted, that is, �11 and �21 for Factor F1 and
�92 and �10,2 for Factor F2 (see Figure 2). To clarify, a structure
matrix R with specified loading denoted by 1 and unspecified
loading denoted by �1 can be defined corresponding to the factor
loading matrix �, as follows:

RT � � 1 1 �1 �1 �1 �1 �1 �1 �1 �1
�1 �1 �1 �1 �1 �1 �1 �1 1 1 �,

which implies four specified loadings and 16 Lasso loadings (8
nonzero and 8 zero, i.e., �0). For the C-step recovery, the PCFA
model in Figure 1 with one loading per item was fitted. The
equivalent structure matrix is as follows:

RT � � 1 1 1 1 1 �1 �1 �1 �1 �1
�1 �1 �1 �1 �1 1 1 1 1 1 �,

which implies 10 specified loadings and 10 Lasso loadings (8 zero
and 2 nonzero). Performance assessment involved computing the
bias of the parameter estimates (BIAS), the mean of the standard

error estimates (SE), the root mean square error (RMSE) between
the estimates and the true values, and the percentage of estimates
significantly different from zero at � � .05 (SIG%) based on the
HPD interval.

Simulation results for the E-step can be found in Table 2. The
loading recovery in terms of BIAS and RMSE could be poor when
the items were associated with off-diagonal residual elements, but
was acceptable otherwise. Poor loading estimates could not be
improved with a larger sample size, which suggests a systemic
error due to ignoring the nonzero off-diagonal elements. Addi-
tional simulation studies revealed that the biases of estimates were
also related to the level of residual correlations, the sparsity of the
residual covariance matrix, and the magnitude of the cross-
loadings (see Appendix D for details). Recovery of factorial cor-
relations was also poor with large SE and lower power (i.e.,
SIG%). However, the Type I error rates for misidentifying zero
loadings (i.e., �0) as significant were almost zero, and the power
for detecting significant loadings was close to one. This result
suggests that all significant loading estimates will be correctly
identified in the E-step and accordingly can be used as specified
loadings to satisfy the sufficient constraint for the C-step.

Additional simulation studies were conducted with the same
data sets by fitting the model in the E-step with one specified
loading per factor (that is, �11 for F1 and �10,2 for F2) or no

Table 1
Two Sets of Prior Values

Set alj blj as bs a0 b0 �0j H0j S0 v0

1 1 .01 1 .01 1 .01 0 4I I � .1od K � 2
2 1 .1 1 .1 1 .1 0 I I � .5od K � 8

Note. I � identity matrix; I � .1od � diagonal elements as 1 and off-diagonal elements as .1; I � .5od � diagonal elements as 1 and off-diagonal elements
as .5; �0 and H�0 not set as the intercept is not of interest in this research.

Table 2
E-Step Results in Study 1

Par True

N � 250 N � 500

BIAS RMSE SE SIG% BIAS RMSE SE SIG%

�11 0.7 0.210 0.219 0.122 0.962 0.230 0.240 0.105 0.985
�21 0.7 0.220 0.228 0.123 0.962 0.231 0.240 0.105 0.985
�31 0.7 �0.111 0.125 0.096 0.971 �0.107 0.118 0.077 0.990
�41 0.7 �0.130 0.142 0.098 0.976 �0.131 0.141 0.079 0.990
�51 0.5 �0.054 0.079 0.133 0.986 �0.059 0.081 0.118 0.990
�61 0.5 �0.063 0.085 0.133 0.971 �0.060 0.081 0.117 0.980
�52 0.5 �0.002 0.058 0.133 0.981 0.002 0.058 0.118 0.965
�62 0.5 0.002 0.059 0.133 0.976 �0.002 0.057 0.118 0.965
�72 0.7 �0.030 0.068 0.124 0.929 �0.023 0.077 0.099 0.955
�82 0.7 �0.030 0.071 0.122 0.929 �0.025 0.078 0.098 0.955
�92 0.7 �0.030 0.075 0.123 0.929 �0.025 0.078 0.098 0.955
�10,2 0.7 �0.035 0.072 0.122 0.929 �0.032 0.082 0.097 0.955
�0 0 �0.006 0.102 0.168 0.002 �0.009 0.110 0.151 0.004
�12 0.3 0.039 0.072 0.219 0.176 0.063 0.091 0.204 0.475
�55 0.35 0.051 0.068 0.044 1.000 0.037 0.050 0.030 1.000
�66 0.35 0.050 0.070 0.044 1.000 0.042 0.053 0.030 1.000
�jj 0.51 �0.019 0.129 0.055 1.000 �0.028 0.121 0.038 1.000
�l — 4.148 0.571 2.231 1.000 4.153 0.354 2.199 1.000

Note. �jj averaged across elements from j � 1 to 4 and 7 to 10; �0 averaged across all zero loading estimates; for �l, BIAS � mean; RMSE � SD.
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specified loading (that is, all loadings were unspecified). The
results presented in Table 3 indicate that the Type I error rates
decreased and the power increased when the number of specified
loadings per factor increased from zero to two. The case of one
specified loading per factor was acceptable in general and can serve as
the minimum constraint, while two or more specified loadings per
factor is preferred for more stable performance in the E-step.

Table 4 summarizes the simulation results for the C-step. The
loading estimates were acceptable in general, with those for the first
factor relatively worse likely due to the within-factor residual cova-
riance �12. The recovery for nonzero Lasso loadings (i.e., �61, �52)
was also slightly worse. Recovery of factorial correlation was better
than that in the E-step, but the power for the smaller sample size was
still low. The Type I error rates for both zero Lasso loadings and zero
residual terms were zero, suggesting the conservative nature of the
Bayesian Lasso. The power for �12 was also close to zero, making it
difficult to identify nonzero residual covariance within one factor. The
reason was likely because the related �11 and �21 estimates were
positively biased. Additional simulation studies revealed that power
was also related to the position of the nonzero elements (that is,
within-factor or between-factor) and the magnitude of residual corre-
lation (see Appendix D for details). Finally, all estimates improved
with a larger sample size.

The estimates of the shrinkage parameters (Tables 2 and 4) were
about the same across different sample sizes, suggesting that
the penalty was largely independent of the sample size. The
increase of �l from the E-step to the C-step might hint at interfer-
ence between the L1 penalties on the loadings and off-diagonal
residual elements. To better investigate the impact of the Lasso
technique in parameter estimation, one simulated data set was
randomly chosen, and the loadings �10,1, �12, �61, and �52 were
treated as specified and unspecified, respectively. The correspond-
ing posterior distributions (see Figure 5) suggest that, compared
with the specified loadings, the unspecified loadings always
pushed toward zero with the Lasso prior, and cases with smaller
values were more remarkable.

Study 2: Performance in a More Complex Case

Study 2 evaluated the performance of the E-step and C-step in
a more complex case with three factors and 18 items, namely, J �
18 and K � 3, through a simulation study. The factorial correla-
tions were set as �kk= � .3 for k and K= � 1 to 3 and k � k=. The
loading matrix was

�T ��11 21 31 41 51 61 71 0 0 0 0 0 0 0 0 0 0 18,1

0 0 0 0 0 62 72 82 92 10,2 11,2 12,2 13,2 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 12,3 13,3 14,3 15,3 16,3 17,3 18,3

�.

The following loadings were set as .7: �j1 for j � 2 to 5, �j2 for
j � 8 to 11, and �j3 for j � 14 to 17; the following loadings were
set as .5: �11, �61, �71, �18,1, �62, �72, �12,2, �13,2, �13, �12,3, �13,3,
and �18,3; and all other loadings were set as �0 � 0. For the
residual structure in �, the diagonal elements were �jj � .51 for
j � 2 to 5, 8 to 11, and 14 to 17 and �jj � .35 for j � 1, 6, 7, 12,
13, and 18. The nonzero off-diagonal elements for the lower
triangle were �43 � �16,15 � �10,9 � �85 � �14,11 � �17,2 � .3

with a symmetric upper triangle. The first three terms were within-
factor whereas the last three were between-factor. All other off-
diagonal elements were set as �0 � 0. This was a balanced design,
as each factor was measured by four items with cross-loadings,
two items with within-factor residual covariance, and two items
with between-factor residual covariance.

The structure matrix RT for the E-step and C-step were, respec-
tively,

Table 3
Type I Error Rate and Power of Bayesian Lasso in the E-Step

Par True

N � 250 N � 500

SIG%(0) SIG%(1) SIG%(2) SIG%(0) SIG%(1) SIG%(2)

�11 0.7 0.270 0.890 0.962 0.330 0.950 0.985
�21 0.7 0.270 0.890 0.962 0.330 0.950 0.985
�31 0.7 0.370 0.900 0.971 0.350 0.960 0.990
�41 0.7 0.450 0.910 0.976 0.460 0.970 0.990
�51 0.5 0.690 0.690 0.986 0.770 0.750 0.990
�61 0.5 0.640 0.630 0.971 0.760 0.800 0.980
�52 0.5 0.770 1.000 0.981 0.750 0.990 0.965
�62 0.5 0.750 0.990 0.976 0.750 0.990 0.965
�72 0.7 0.290 0.890 0.929 0.380 0.960 0.955
�82 0.7 0.290 0.890 0.929 0.370 0.960 0.955
�92 0.7 0.290 0.890 0.929 0.370 0.960 0.955
�10,2 0.7 0.300 0.890 0.929 0.370 0.960 0.955
�0 0 0.270 0.014 0.002 0.401 0.017 0.004

Note. SIG%(0), SIG%(1), and SIG%(2) represent the percentage of estimates significantly different from zero at � � .05 with no specified loading, one
specified loading, and two specified loadings per factor, respectively.
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� 1 1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1
�1 �1 �1 �1 �1 �1 �1 1 1 �1 �1 �1 �1 �1 �1 �1 �1 �1
�1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 1 1 �1 �1

�
and

� 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1
�1 �1 �1 �1 �1 �1 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1
�1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 1 1 1 1 1 1

�.

This implies that there were six specified loadings and 48 Lasso
loadings (30 zero and 18 nonzero) for the E-step, and 18 specified
loadings and 36 Lasso loadings (30 zero and 6 nonzero) for the
C-step. The sample size was N � 250, and other conditions were
similar to the above.

Table 5 summarizes the simulation results for the E-step and
C-step. The performance of both steps in Study 2 was clearly better
than for the simpler Study 1 case above. For the E-step, loading
estimates involving residual covariance were worse, but all non-
significant and significant loadings could be successfully identi-
fied. Not surprisingly, the C-step estimates were better than the
E-step counterpart. In the C-step, the nonzero Lasso loadings (e.g.,
�71, �18,1) performed similarly well as specified loadings. Loading
estimates with within-factor residual covariance (e.g., �31, �41)
were still positively biased, but within a reasonable range. The
extremely low Type I error rates for both zero Lasso loadings and
zero residual terms were desirable. Recovery of factorial correla-
tions and most residual terms was also satisfactory. Of a little
concern was the power to identify within-factor residual covari-
ance. In general, the results suggest that the PCFA approach has
more satisfactory performance in this more complex case.

Additional simulation studies were conducted across different
situations, including more heterogeneous factor loadings, different
patterns of the loading and residual covariance matrix, and a
different number of specified loadings. In brief, the results were
generally similar to or consistent with the findings in these two
simulation studies, and details can be found in Appendix D.

Study 3: Questionnaire of Mathematics Learning

During scale development, it is common to have some items
with unclear factor loading, and this issue is well known within the
scope of the PCFA approach. Table 6 lists potential items for a
questionnaire addressing anxiety, confidence (i.e., self-
efficacy), and utility (valuing) in mathematics learning. A sim-
ilar background questionnaire can be found in large-scale as-
sessments such as the Trends in International Mathematics and
Science Study (TIMSS; International Association for the Eval-
uation of Educational Achievement, 2011). For content analy-
sis, three mathematics educators were asked to rate if the items
measured specific factors clearly, clearly not, or unclearly with
1, �1, or 0, respectively. The educators were encouraged to be
more conservative, namely, to give a ranking of 1 or �1 only

Table 4
C-step Results in Study 1

Par True

N � 250 N � 500

BIAS RMSE SE SIG% BIAS RMSE SE SIG%

�11 0.7 0.081 0.092 0.137 1.000 0.078 0.087 0.123 1.000
�21 0.7 0.084 0.096 0.137 1.000 0.078 0.086 0.123 1.000
�31 0.7 �0.067 0.081 0.131 1.000 �0.058 0.068 0.115 1.000
�41 0.7 �0.087 0.096 0.130 0.995 �0.082 0.089 0.116 1.000
�51 0.5 �0.039 0.064 0.133 0.995 �0.043 0.059 0.116 0.995
�61 0.5 �0.128 0.139 0.139 0.780 �0.105 0.114 0.125 0.875
�52 0.5 �0.082 0.102 0.151 0.775 �0.061 0.075 0.131 0.910
�62 0.5 0.013 0.050 0.134 0.985 0.001 0.036 0.117 0.995
�72 0.7 �0.054 0.070 0.137 0.990 �0.046 0.056 0.117 1.000
�82 0.7 �0.029 0.053 0.134 0.990 �0.015 0.035 0.112 1.000
�92 0.7 �0.025 0.052 0.134 0.990 �0.016 0.036 0.112 1.000
�10,2 0.7 �0.027 0.054 0.135 1.000 �0.017 0.036 0.112 1.000
�0 0 �0.008 0.043 0.111 0.000 �0.008 0.037 0.104 0.000
�12 0.3 0.069 0.100 0.191 0.560 0.086 0.101 0.172 0.850
�21 0.3 �0.109 0.118 0.146 0.005 �0.102 0.110 0.138 0.040
�74 0.3 �0.077 0.086 0.098 0.755 �0.070 0.076 0.089 0.915
�55 0.35 0.106 0.116 0.114 1.000 0.083 0.091 0.095 1.000
�66 0.35 0.097 0.109 0.111 1.000 0.082 0.090 0.093 1.000
�jj 0.51 0.025 0.091 0.133 1.000 0.014 0.075 0.118 1.000
�0 0 0.023 0.043 0.082 0.000 0.019 0.036 0.071 0.000
�l — 7.584 0.488 2.653 1.000 7.543 0.355 2.528 1.000
�s — 2.188 0.125 0.354 1.000 2.276 0.100 0.360 1.000

Note. �jj averaged across elements from j � 1 to 4 and 7 to 10; �0 averaged across all zero loading estimates; for �l and �s, BIAS � mean; RMSE �
SD.
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when they were very confident and to use 0 as the default value.
The mean ratings in Table 6 reflect the degree of uncertainty for
item-factor fitness from a substantive perspective, which cannot
be easily accommodated under the traditional EFA or CFA
approach. Under the PCFA approach, one can simply designate
those elements with 1 as specified loadings and all others as
Lasso loadings.

Responses from 218 Chinese fifth grade students were collected
and analyzed using the E-step and C-step procedures in sequence,
with estimation results given in Table 7. Significant Lasso loadings
identified in the E-step were specified to satisfy the constraint
necessary for the C-step. Note that for Item 14, two loadings were
found significant with close values in the E-step and accordingly
were both specified in the C-step. No significant residual covari-
ance can be identified in the C-step, which can explain the simi-
larity of estimation results between the two steps. One can also
triangulate the results with the BLCCFA model by fixing all
significant Lasso loadings in the C-step as specified and nonsig-
nificant Lasso loadings as zero. Not surprisingly, the difference
was trivial (results not shown to save space, but available upon
request).

Study 4: Humor Styles Questionnaire

When a more confirmatory approach is adopted to develop a
psychological scale, the C-step can be used directly. The Humor
Styles Questionnaire (HSQ; Martin, Puhlik-Doris, Larsen, Gray, &
Weir, 2003) with four factors and 32 items can be found in
Appendix E. As each item supposedly loads on only one factor, the
development process of the HSQ was oriented toward a confirma-
tory approach. Although the major loading of each item was
confirmed, researchers were concerned about cross-loadings for
some items, as the related behaviors tended to be multidimensional
(Heintz, 2017).

Data for HSQ from 1,070 respondents were publicly available at
https://openpsychometrics.org/_rawdata/. Dissatisfactory fitting as
shown in Table 8 was obtained using standard CFA, with no
cross-loading or residual covariance in Mplus (L. K. Muthén &
Muthén, 1998 –2010) with the robust maximum likelihood es-
timation. Moreover, the PMM approach was challenging since
many cross-loadings and residual covariance terms were sug-
gested based on the modification index. In contrast, the C-step
with major and Lasso loadings and residual covariance structure

Figure 5. Posterior distributions of specified and unspecified loadings. See the online article for the color
version of this figure.
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can be directly applied. The estimation resulted in seven sig-
nificant cross-loadings and 15 significant residual covariance
terms, as shown in Table 9. It appeared that both cross-loadings
and residual covariance contributed to model fitness. Note that
most significant cross-loadings were around .1 and only six

significant residual terms were above .1. This result suggests
that many estimates were significant merely due to the sample
size.

A BLCCFA model with all significant loadings in the C-step as
specified was used for triangulation. It resulted in the same sig-

Table 5
Simulation Results for Study 2

Par True

E-step C-step

BIAS RMSE SE SIG% BIAS RMSE SE SIG%

�11 0.5 �0.014 0.064 0.093 1.000 �0.010 0.051 0.096 1.000
�21 0.7 �0.056 0.083 0.083 1.000 �0.035 0.053 0.104 1.000
�31 0.7 0.162 0.169 0.085 1.000 0.082 0.093 0.106 1.000
�41 0.7 0.163 0.168 0.085 1.000 0.084 0.093 0.106 1.000
�51 0.7 �0.069 0.090 0.082 1.000 �0.034 0.054 0.104 1.000
�61 0.5 �0.039 0.068 0.096 1.000 �0.007 0.049 0.096 1.000
�71 0.5 �0.041 0.076 0.095 1.000 �0.056 0.081 0.099 1.000
�18,1 0.5 �0.018 0.063 0.093 1.000 �0.052 0.076 0.099 0.995
�62 0.5 �0.033 0.067 0.094 1.000 �0.061 0.084 0.100 1.000
�72 0.5 �0.039 0.073 0.094 1.000 �0.017 0.055 0.097 1.000
�82 0.7 �0.057 0.082 0.083 1.000 �0.042 0.062 0.107 1.000
�92 0.7 0.179 0.184 0.087 1.000 0.080 0.090 0.108 1.000
�10,2 0.7 0.174 0.180 0.086 1.000 0.087 0.096 0.108 1.000
�11,2 0.7 �0.066 0.085 0.083 1.000 �0.038 0.055 0.105 1.000
�12,2 0.5 �0.039 0.067 0.094 1.000 �0.012 0.049 0.098 1.000
�13,2 0.5 �0.036 0.071 0.094 1.000 �0.057 0.080 0.101 0.990
�13 0.5 �0.048 0.081 0.096 1.000 �0.054 0.078 0.101 1.000
�12,3 0.5 �0.046 0.076 0.093 1.000 �0.057 0.078 0.100 0.995
�13,3 0.5 �0.046 0.075 0.094 1.000 �0.012 0.054 0.097 1.000
�14,3 0.7 �0.089 0.109 0.082 1.000 �0.042 0.061 0.106 1.000
�15,3 0.7 0.190 0.195 0.087 1.000 0.081 0.091 0.108 1.000
�16,3 0.7 0.191 0.196 0.087 1.000 0.082 0.092 0.108 1.000
�17,3 0.7 �0.084 0.105 0.083 1.000 �0.041 0.060 0.105 1.000
�18,3 0.5 �0.053 0.079 0.096 1.000 �0.014 0.053 0.096 1.000
�0 0 �0.013 0.070 0.107 0.002 �0.007 0.038 0.086 0.000
�kk= 0.3 0.027 0.068 0.156 0.612 0.031 0.074 0.135 0.805
�jj 0.35 0.064 0.079 0.043 1.000 0.071 0.084 0.073 1.000
�ii 0.51 �0.065 0.149 0.052 1.000 �0.009 0.081 0.105 1.000
�w 0.3 — — — — �0.090 0.101 0.106 0.702
�b 0.3 — — — — �0.062 0.071 0.070 1.000
�0 0 — — — — 0.005 0.028 0.053 0.000
�l — 6.059 0.558 1.912 1.000 7.789 0.302 1.468 1.000
�s — — — — — 2.615 0.130 0.248 1.000

Note. For �kk=, k and K= � 1 to 3 and k � k=; for �jj, j � 2 to 4, 8 to 12, and 14 to 17; for �ii, i � 1, 6, 7, 11, 12, and 18; �w averaged across �43, �16,15,
and �10,9 (within factor); �b averaged across �85, �14,11, and �17,2 (between factors); for �l and �s, BIAS � mean; RMSE � SD.

Table 6
Questionnaire of Mathematics Learning and the Mean Rating of Item-Factor Fitness

# Content F1 F2 F3

1 Mathematics makes me nervous 1.00 0.00 �1.00
2 Mathematics exams are easy for me �0.33 1.00 �1.00
3 I worry about mathematics exams 1.00 0.00 �1.00
4 I am not bothered by mathematics courses 0.33 0.67 �0.67
5 I find mathematics confusing 0.67 0.33 �0.33
6 My brain is empty when solving mathematics problem 0.67 0.33 �0.33
7 Solving difficult mathematics problem is one of my strengths �0.33 1.00 �1.00
8 I usually do well in mathematics �0.67 1.00 �1.00
9 I learn things quickly in mathematics �0.67 0.67 �1.00

10 Mathematics helps me in my daily life �0.67 �1.00 1.00
11 I think mathematics will help me in my future life �0.67 0.00 0.67
12 I need to do well in mathematics to get into the university of my choice �1.00 �0.33 1.00
13 I need to do well in mathematics to get the job I want �1.00 �0.33 1.00
14 I am willing to take more mathematics courses �1.00 0.33 0.33

Note. All items employed a 5-point Likert scale, with 1 indicating agree a lot and 5 indicating disagree a lot; F1 � anxiety; F2 � confidence; F3 � utility.
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nificant loadings and 88 significant residual covariance terms, 19
of which were above .1 (see Table 9). The loading estimates were
generally close, whereas there was some difference between the
residual structures, suggesting the impact of the Lasso loadings.

Three standard CFA models were fitted with the same sig-
nificant loadings identified in the C-step but with different
residual structures: residual covariance above .1 in the C-step
(M1), all significant residual covariance in the C-step (M2), and
residual covariance above .1 in BLCCFA (M3). As shown in
Table 8, all three models were acceptable and the difference
was small. Moreover, although M2 was the best model, M1 was
not a bad choice considering the small number of residual terms
involved. The results suggest that the C-step can offer some
flexibility in choosing the final model when the sample size is
large.

Discussion

A different amount of substantive knowledge can be avail-
able during scale development, making the EFA and CFA two
ends of a continuum. The partially confirmatory approach with
Bayesian Lasso is flexible in addressing a wide range of the
substantive continuum that would be challenging otherwise.
Specifically, a C-step can be adopted when the constraint of one
specified loading per item is satisfied, and an additional E-step
is recommended before applying the C-step when only a few

loadings per factor can be specified. Note that the C-step
reduces to the Bayesian covariance Lasso CFA when there is no
Lasso loading, while the E-step is similar to the BSEM without
residual covariance. The PCFA approach with Bayesian Lasso
can be derived using the Bayesian hierarchical formulation with
different Lasso and regular priors by combining the Bayesian
regression and covariance Lasso. Moreover, this approach is
implemented using MCMC estimation with both a block Gibbs
sampler and an adapted Metropolis-Hastings algorithm.

Simulation studies showed that both steps can perform as
expected, and the performance was better for the complex case
with three factors than for the simple case with two factors. This
finding is consistent with the nature of the L1 norm penalty that
can better select variables among many candidates and is mean-
ingful for scale development with many factors, which is not
uncommon in social and behavioral science. Study 3 suggested
that a conservative approach can be adopted to specify the
item-factor connections substantively with the help of both the
E-step and C-step of the PCFA approach, allowing the data to
give more information. This would be especially valuable when
consensus or agreement among content experts is difficult to
achieve. The two steps are also especially beneficial when the
sample size is relatively small (e.g., �200). Practitioners can
apply an intermediate stage after qualitative content analysis
but before collecting data on a large scale.

Table 7
Parameter Estimates for the Questionnaire of Mathematics Learning

E-step C-step

Item F1 F2 F3 RV F1 F2 F3 RV

1 0.708� 0.056 �0.044 0.522 0.660� 0.024 �0.041 0.587
2 �0.157 0.573� �0.057 0.623 �0.116 0.560� �0.019 0.657
3 0.653� �0.078 0.131 0.603 0.584� �0.026 0.016 0.676
4 �0.058 0.269� 0.099 0.856 �0.027 0.366� 0.040 0.850
5 0.652� 0.005 �0.044 0.568 0.627� �0.016 �0.025 0.615
6 0.607� �0.054 �0.064 0.562 0.637� �0.057 �0.032 0.573
7 0.007 0.746� �0.070 0.519 �0.008 0.671� �0.010 0.586
8 0.028 0.704� 0.034 0.501 0.013 0.650� 0.063 0.565
9 0.088 0.485� 0.149 0.681 0.051 0.574� 0.051 0.681

10 �0.113 0.064 0.427� 0.710 �0.066 0.016 0.534� 0.692
11 �0.047 0.085 0.560� 0.584 �0.006 0.042 0.653� 0.569
12 �0.066 �0.042 0.593� 0.649 �0.060 �0.008 0.551� 0.690
13 0.076 �0.006 0.783� 0.440 0.052 0.042 0.678� 0.564
14 �0.042 0.319� 0.306� 0.650 �0.014 0.330� 0.339� 0.654

Note. F1 � anxiety; F2 � confidence; F3 � utility; RV � residual variance. Underscored are specified loadings.
� Significant loadings.

Table 8
CFA Model Fitness for the Humor Styles Questionnaire

Model RMSEA 90%CI CFI TLI SRMR BIC df #RCT

M0 0.054 [0.052, 0.057] 0.844 0.831 0.065 96697 458 0
M1 0.040 [0.037, 0.043] 0.917 0.907 0.046 95981 445 6
M2 0.037 [0.035, 0.040] 0.929 0.920 0.044 95898 436 15
M3 0.038 [0.035, 0.041] 0.928 0.918 0.043 95923 432 19

Note. RMSEA � root mean square error; CFA � confirmatory factor analysis; M0 � no cross-loading or residual covariance; M1–M3 � all significant
loadings identified in the C-step; M1 � residual covariance above .1 in the C-step; M2 � all significant residual covariance in the C-step; M3 � residual
covariance above .1 in BLCCFA; #RCT � number of residual covariance term.
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Study 4 demonstrated the advantage of the C-step to identify
significant cross-loadings and residual covariance when encoun-
tering many factors with a large number of items, a task that would
be challenging with the traditional PMM approach. Although
unnecessary because the constraint of one specified loading per
item was well satisfied with the available literature, we tried the
E-step with only two major loadings per factor and found that all
other major loadings were successfully recovered. Accordingly, a
combination of the E-step and C-step can offer more freedom
during scale development. The C-step can also offer some flexi-
bility in choosing a succinct model when the sample size is large.
Finally, the Bayesian covariance Lasso CFA without any Lasso
loading can be used for triangulation, as shown in both studies.

Although the PCFA with Bayesian Lasso approach appears to
be promising, some issues can be addressed in future research to
make the framework more comprehensive and versatile.

First, the PCFA approach assumes that substantive knowledge
about the loading structure is partially available but knowledge
about the factors (i.e., number of factors and their operational
definitions) is largely available. During scale development, how-
ever, it is likely that there is a different amount of knowledge about
the factors (e.g., a range of factor numbers or blurred definitions).

It would be valuable but also challenging to extend the PCFA to
accommodate these scenarios.

Second, it would be useful to equip the proposed framework
with powerful means of model comparison to allow comparison of
different substantive knowledge. One possible but also challenging
means is to rely on Bayes factor for comparison.

Third, categorical data are widely available in social and behav-
ioral research, as shown in Studies 3 and 4. These data are treated
as continuous in the existing approach, which is suboptimal and
can result in substantial bias without favorite conditions (e.g.,
normality). Accordingly, it would be valuable to extend the ap-
proach to address dichotomous and polytomous responses, possi-
bly under the umbrella of item response theory.

Finally, Lu, Chow, and Loken (2016) proposed a Bayesian CFA
with the spike-and-slab prior (SSP) and found that their approach
outperformed the ridge regression prior and yielded more parsi-
monious loading structures. However, there is no research to
compare the performance of Bayesian Lasso in estimating the
loadings with that of the SSP under the CFA context. Future
studies can further investigate if the SSP can be incorporated into
the PCFA framework, and if it is possible, explain how that differs
from the existing approach.

Table 9
Significant Loadings and Residual Estimates for the Humor Styles Questionnaire

Item

C-step BLCCFA RCV

F1 F2 F3 F4 F1 F2 F3 F4 Par C-step BLC

1 0.649 0.575 �1,13 0.116
2 0.612 0.615 �13,14 0.116
3 0.531 0.637 �15,16 0.094 0.126
4 0.631 0.593 �1,17 0.122
5 0.615 0.616 �10,18 0.146 0.114
6 0.203 0.378 0.242 0.327 �11,19 0.112 0.109
7 �0.142 0.580 �0.110 0.539 �8,20 0.153 0.165
8 0.714 0.698 �11,21 �0.130
9 0.452 0.461 �17,21 0.142

10 0.726 0.732 �11,23 �0.079 �0.073
11 0.540 0.483 �4,24 0.096 0.123
12 0.635 0.610 �15,24 �0.072 �0.084
13 0.614 0.530 �1,25 0.124
14 0.674 0.669 �5,25 �0.085
15 0.647 0.579 �13,25 0.147 0.263
16 0.567 0.592 �17,25 0.130
17 0.697 0.624 �21,25 0.142
18 0.723 0.690 �23,25 0.086 0.116
19 0.178 0.452 0.344 0.435 �27,28 0.092
20 0.710 0.679 �5,29 0.110 0.158
21 0.651 0.583 �22,29 0.069 0.093
22 0.422 0.449 �24,29 �0.113
23 0.489 0.496 �25,29 0.110
24 0.483 0.423 �6,30 0.218 0.235
25 0.634 0.484 �22,31 0.071 0.097
26 0.666 0.686
27 0.551 0.549
28 0.140 0.160 0.249 0.190 0.271 0.221
29 0.561 0.125 �0.163 0.472 0.128 �0.187
30 0.447 0.397
31 0.637 0.574
32 0.659 0.688

Note. BLCCFA � Bayesian covariance Lasso for CFA; F1 � affiliative humor; F2 � self-enhancing humor; F3 � aggressive humor; F3 � self-defeating
humor; RCV � residual covariance; BLC � BLCCFA; Underscored are cross-loadings or residual covariance above .1; only residual covariance significant
at the C-step or significant and above .1 in BLCCFA is presented.
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Appendix A

Full Conditional Distribution for �j
� in the C-Step

Equation 1 can be rewritten as yij � �j � �j
T�i � �ij, where

�j
T � (�j1, �j2, . . . �jK) is the jth row of �. After rearrange the

latent factors and loading vector for item j, the factor vector is

�i � ��i�

�i
� 	 where the K= � 1 vector �i� and K	 � 1 vector �i

� are

associated with the zero or specified loadings and unspecified
loadings, respectively. Similarly, denote the rearranged factor ma-

trix as 
 � �
�



� 	 � � �1�,. . .�i�,. . .�N�

�1
�
,. . .�i

�
,. . .�N

� 	. The conditional distribution

for �i
� can be expressed as:

p��j
� | Y, ��j, 
, �, �, �, �lj� � p��j

� | yj, y�j, ��j, 
, �, �l�
� p�yj | y�j, �j

�, ��j, 
, ��p��j
��

�

i�1

N

p�yij | yi(�j), �j
�, ��j, �i, ��p��j

��

�

i�1

N

exp�1
2�yij � �j � ��j

��T�i
� � �j

T��jj
�1�yi(�j) � ��j

� ��j
T �i�T � ��jj � �j

T��jj
�1 �j��1�yij � �j � ��j

��T�i
�

� �j
T��jj

�1�yi(�j) � ��j � ��j
T �i�� � p(�j

�).

where �jj is the jth diagonal element of �, �j � (�j1, . . ., �j,j�1,
�j,j�1, . . ., �jJ)

T is the vector of all off-diagonal elements of the jth
column, and ��jj is the (J � 1) � (J � 1) matrix resulting from
deleting the jth row and jth column from �.

Let �j
* � �jj � �j

T��jj
�1 �j, yij

* � yij � �j � �j
T��jj

�1 �yi��j� �
��j � ��j

T �i�, and Yj
* � �y1j

* , y2j
* ,. . .yNj

* �T. With Equation 5 as the
prior for �j

�, the right hand side becomes:



i�1

N

exp��1
2(yij

* � (�j
�)T�i

�)T�j
*�1(yij

* � (�j
�)T�i

�)� � p(�j
�)

�exp��1
2�j

*�1(Yj
*TYj

* � 2(�j
�)T��Yj

* � (�j
�)T(��(��)T)�j

�)� � p(�j
�).

) p��j
� 
 Y, ��j, 
, �, �, ���N�m, var�, where

m � ��j
*�1�
��
��T� � D	j

�1��1��j
*�1
�Yj

*� and var �
��j

*�1�
��
��T� � D	j

�1��1.
The conditional distribution for �jk can be expressed as:

p(	jk
2 | Y, �, 
, �, �, �) � p(jk | 	jk

2 )p(	jk
2 )

�(	jk
2 )�

1
2exp�� 1

2	jk
2 jk

2 �exp��
�l

2

2 	jk
2 �.

)p� 1
	jk

2 |Y, �, 
, �, �, �	 � Inv-Gaussian�� �l
2

jk
2 , �l

2	.

The conditional distribution for �l can be expressed as:

p(�l
2 | Y, �, 
, �, �, �) � p(	jk

2 | �l
2)p(�l

2)

�
�l

2

2 exp��
�l

2

2 	jk
2 �� (�l

2)al�1exp��bl(�l
2)�

�(�l
2)(al�1)�1exp����jk

2

2 � bl	(�l
2)�

�Gamma�al � 1,
	jk

2

2 � bl	.
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Appendix B

Full Conditional Distribution for �j
� in the E-Step

Different from the C-step, � � diag(�jj) is modeled as a
diagonal matrix. Let Yj

* � �y1j,y2j,. . .yNj �T. With notations similar
above and Equation 6 as the prior, the conditional distribution for
�i

� can be expressed as:

p(�j
� | Y, 
, �, �, �, �lj) � p(yj | �j

�, 
, �)p(�j
� | �jj)

�

i�1

N

exp��1
2(yij � (�j

��T
�i

�)T�jj
�1(yij � (�j

�T�i
�) � p(�j

� | �jj)

)p��j
� 
 Y, 
, �, �, �, �l� � N�m, var�, where

m � �
��
��T � D	j

�1��1���Yj
*� and var � �jj�


��
��T �
D	j

�1��1.

The conditional distribution for �j can be expressed as:

p(�jj
�1 | Y, �j

�, 
, �, �) � p(yj | y�j, �j
�, 
, �)p(�j

� | �jj)p(�jj
�1),

which can be simplified as

� Gamma�a0j � N
2 � K

2 � 1, b0j � 1
2��i�1

N

(yij � (�j
�)T�i

�)2

� (�j
�)TD	j

�1�j
��	.

Similar to the C-step, the conditional distribution for �jk and �j

can be expressed, respectively, as:

p( 1
	jk

2 | Y, �, 
, �, �, �) � Inv-Gaussian�� �l
2

jk
2 �jj, �l

2	,

and

p(�l
2 | Y, �, 
, �, �, �) � Gamma(al � 1,

	jk
2

2 � bl).

Appendix C

Estimation of the Residual Covariance Matrix in the C-Step

The conditional distribution p(	 | Y,�,
,�,�,�,�s) can be de-
composed as follows:

p(	 | Y, �, 
, �, �, �, �s) � p(Y | 	, �, 
, �, �)p(�, �s)

� | 	 | N⁄2exp����1
2S	�


i�j
exp��

�ij
2

2	ij
	� 


j�1

J

exp���s�jj

2
	I(	

� 0),

where � � (�ij)ij is the vector of the latent scale parameters, and
S � �i�1

N �yi � � � ��i��yi � � � ��i�.
For k � 1, 2, . . . , J, and without loss of generality, partition and

rearrange the columns of 	 and S as follows:

	 � �	�kk k

k
T �kk

	, S � �S�kk sk

sk
T skk

	.

Where �kk is the k-th diagonal element of 	, k � (�k1, . . .,
�k,k�1, �k,k�1, . . ., �kJ)

T is the vector of all off-diagonal elements
of the k-th column, and ��kk is the (p � 1) � (p � 1) matrix
resulting from deleting the k-th row and k-th column from 	.
Similar, skk is the k-th diagonal element of S, sk is the vector of
all-diagonal elements of the k-th column of S, and S�kk is the
matrix with the k-th row and k-th column of S deleted. Therefore
we have:

p�k, �kk | ��kk, Y, 
, �, �, �, �, �s� � ��kk � k
T	�kk

�1 k�
N
2

� exp��1
2[k

TM	
Tk � 2sk

Tk � �skk � �s��kk]�

where M	 is the diagonal matrix with diagonal elements �k1, . . .,
�k,k�1, �k,k�1, . . ., �kJ.

Let � � k and � � �kk � k
T	�kk

�1 k. It can be shown that:

p�� | 	�kk, Y, 
, �, �, �, �, �s�

� N����skk � �s�	�kk
�1 � M	

�1�1sk,��skk � �s�	�kk
�1 � M	

�1�1�,

p�� 
 	�kk, Y, 
, �, �, �, �, �s��Gamma�N
2 � 1,

skk��s

2 �.
After simulating observations from the above conditional dis-

tributions, we can obtain k � �, k
T � �T and �kk � � �

k
T��kk

�1 k, then the k-th column and row of 	 are updated at a
time. At the end, � � 	�1 is computed.

The conditional distribution for � � (�ij)ij can be expressed as:

p(� | Y, �, 
, �, �, 	, �s) � p(	 | �, �s)p(� | �s)

�

i�j

	ij
�

1
2exp��

�ij
2 � 	ij

2�s
2

2	ij
�.

It can be shown that for i  j,

p� 1
	ij

|Y, �, 
, �, �, 	, �s	 � Inv � Gaussian�� �s
2

�ij
2 , �s

2	.

The conditional distribution for �s can be expressed as:

p(�s | Y, �, 
, �, �, 	, �) � p(� | �s)p(�s)

�Gamma �as � J(J � 1)
2 , bs � 1

2�i�1

J

�
j�1

J

|�ij|	 .
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Appendix D

Additional Simulation Studies

Additional simulation studies were conducted under more het-
erogeneous factor loadings, as shown in Table D1. The model
settings were the same as in Study 2, except that the data were
generated by a different factor loading matrix with more heterog-
enous loading values. In general, the results indicated that the
performance under the condition with more heterogeneous loading
was similar to that presented in Study 2.

We found that if at least one specified loading per item was
imposed, parameter recovery was satisfactory in the C-step. To
better understand the consequences of imposing this identifiability
constraint, additional simulation studies were conducted. The set-
tings were the same as those in Study 1 except that the data were
generated with diagonal � (i.e., the residuals in the true model
were assumed to be independent). The C-step was fitted with three
specified loadings per factor (that is, �11, �21 and �31 are specified
for F1 and �82, �92, �10,2 are specified for F2). As shown in Table
D2, the recoveries of most parameters were unacceptable. Accord-

ingly, it is difficult to relax the constraint. Moreover, the constraint
is easy to understand and to follow since there is usually a target
factor for each item in scale development.

The consequence of correlated residuals is the existence of local
dependence, which needs to be accounted for during modeling.
Treating the correlated residuals as independent can distort the
loading estimates, especially those associated with the correlated
residuals, as shown in the E-step of Study 1 and 2. Additional
simulation studies were conducted to further understand the con-
sequence of correlated residuals. The settings were the same as
those of Study 1 and 2 except that the data were generated with
diagonal �. The results of the E-step (Table D3 and D4) indicated
that the estimates of all loading parameters were satisfactory.
Accordingly, the biases of loading estimates in the E-step of Study
1 and 2 did come from the correlated residuals.

To investigate whether the model performs depending on the
number of unspecified Lasso loadings or on the structure of the

Table D1
Simulation Studies With More Heterogeneous Loading Values

Par True

E-step C-step

BIAS RMSE SE SIG% BIAS RMSE SE SIG%

�11 0.8 0.034 0.062 0.096 1.000 �0.016 0.048 0.071 1.000
�21 0.8 0.024 0.066 0.091 1.000 0.001 0.054 0.076 1.000
�31 0.8 0.071 0.094 0.092 1.000 0.036 0.067 0.076 1.000
�41 0.3 0.124 0.156 0.087 1.000 0.071 0.107 0.109 0.960
�51 0.5 0.008 0.077 0.089 1.000 0.022 0.069 0.090 1.000
�61 0.6 0.006 0.055 0.092 1.000 0.018 0.056 0.080 1.000
�71 0.3 �0.017 0.063 0.108 0.870 �0.060 0.084 0.087 0.890
�18,1 0.3 �0.004 0.046 0.132 0.620 �0.046 0.061 0.090 0.930
�62 0.3 �0.018 0.058 0.099 0.950 �0.068 0.087 0.089 0.900
�72 0.6 �0.019 0.058 0.091 0.990 0.017 0.056 0.089 1.000
�82 0.8 �0.002 0.069 0.097 0.990 �0.019 0.050 0.085 1.000
�92 0.3 0.191 0.211 0.091 0.990 0.107 0.129 0.130 0.980
�10,2 0.8 0.070 0.101 0.098 0.990 0.036 0.067 0.086 1.000
�11,2 0.5 �0.022 0.083 0.087 0.990 0.007 0.066 0.097 1.000
�12,2 0.6 �0.027 0.067 0.097 1.000 0.027 0.064 0.093 1.000
�13,2 0.3 �0.067 0.084 0.135 0.130 �0.058 0.071 0.090 0.900
�13 0.3 �0.086 0.100 0.137 0.070 �0.022 0.053 0.083 0.960
�12,3 0.3 0.017 0.057 0.116 0.950 �0.051 0.075 0.097 0.810
�13,3 0.8 0.019 0.062 0.117 0.990 0.011 0.055 0.079 1.000
�14,3 0.3 �0.024 0.092 0.088 0.870 0.004 0.070 0.099 0.940
�15,3 0.5 0.060 0.099 0.103 0.990 0.046 0.083 0.099 1.000
�16,3 0.6 0.051 0.094 0.107 0.990 0.042 0.084 0.093 1.000
�17,3 0.5 �0.032 0.084 0.097 0.990 0.018 0.063 0.097 1.000
�18,3 0.8 �0.024 0.065 0.120 0.990 0.003 0.051 0.080 1.000
�0 0 �0.024 0.072 0.110 0.012 �0.013 0.034 0.073 0.000
�kk= 0.3 0.067 0.094 0.168 0.670 0.069 0.095 0.118 0.973
�jj 0.53 �0.010 0.066 0.054 1.000 0.014 0.064 0.077 1.000
�w 0.3 — — — — �0.056 0.074 0.082 0.903
�b 0.3 — — — — �0.038 0.058 0.063 1.000
�0 0 — — — — �0.001 0.028 0.046 0.003
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loading matrix, additional simulation studies were conducted.
The model settings were the same as Study 1 (10 items, two
factors) except that the data were generated with diagonal �
(i.e., the residuals in the true model were assumed to be inde-
pendent). In the E-step, the model was fitted with one specified
loading per factor (that is, �11 for Factor 1 and �10,2 for Factor
2) or no specified loadings (that is, all loadings were unspeci-

fied). The results, found in Tables D5 and D6, can be compared
with those in Table D3. The estimates in the case of no
specified loading (Table D6) were poor. In contrast, the case of
one specified loading per factor (Table D5) was acceptable, but
slightly worse than the case of two specified loadings per factor
(Table D3). This is consistent with the findings in Study 1 (with
correlated residuals).

Table D2
C-step Results With Three Specified Loadings per Factor

Par True

N � 250 N � 500

BIAS RMSE SE SIG% BIAS RMSE SE SIG%

�11 0.7 �0.064 0.106 0.259 0.575 �0.052 0.121 0.239 0.650
�21 0.7 �0.064 0.107 0.260 0.600 �0.050 0.119 0.239 0.680
�31 0.7 �0.312 0.324 0.257 0.100 �0.287 0.310 0.243 0.290
�41 0.7 �0.429 0.438 0.227 0.008 �0.389 0.407 0.220 0.110
�51 0.5 �0.300 0.309 0.184 0.000 �0.275 0.290 0.176 0.080
�61 0.5 �0.330 0.336 0.183 0.000 �0.305 0.318 0.177 0.030
�52 0.5 �0.307 0.319 0.220 0.000 �0.268 0.300 0.207 0.120
�62 0.5 �0.245 0.263 0.264 0.000 �0.211 0.248 0.240 0.130
�72 0.7 �0.360 0.376 0.305 0.000 �0.329 0.365 0.283 0.100
�82 0.7 �0.376 0.387 0.306 0.008 �0.340 0.372 0.280 0.120
�92 0.7 �0.497 0.508 0.253 0.000 �0.449 0.480 0.240 0.080
�10,2 0.7 �0.496 0.507 0.254 0.000 �0.447 0.479 0.239 0.070
�0 0 0.009 0.046 0.157 0.000 0.007 0.051 0.155 0.000
�12 0.3 �0.119 0.161 0.411 0.000 �0.073 0.162 0.386 0.080
�55 0.35 �0.023 0.092 0.161 0.283 �0.044 0.137 0.144 0.300
�66 0.35 �0.025 0.084 0.165 0.275 �0.051 0.137 0.146 0.310
�jj 0.51 �0.221 0.322 0.140 0.299 �0.237 0.338 0.126 0.351
�0 0 0.326 0.338 0.165 0.316 0.306 0.328 0.147 0.364

Note. �jj averaged across elements from j � 1 to 4 and 7 to 10; �0 averaged across all zero loading estimates; �0 averaged across all zero residual
covariance estimates.

Table D3
E-Step Results With True Diagonal � and Two Specified Loadings per Factor (10 Items, Two Factors)

Par True

N � 250 N � 500

BIAS RMSE SE BIAS RMSE SE

�11 0.7 0.021 0.078 0.134 0.004 0.068 0.118
�21 0.7 0.010 0.070 0.132 0.006 0.066 0.119
�31 0.7 �0.001 0.071 0.130 0.001 0.068 0.118
�41 0.7 0.003 0.073 0.131 �0.013 0.065 0.114
�51 0.5 �0.019 0.065 0.145 �0.017 0.051 0.130
�61 0.5 �0.025 0.071 0.144 �0.021 0.053 0.132
�52 0.5 �0.018 0.063 0.144 �0.025 0.053 0.130
�62 0.5 �0.019 0.060 0.143 �0.012 0.051 0.130
�72 0.7 0.004 0.058 0.132 0.005 0.066 0.118
�82 0.7 0.000 0.071 0.131 0.003 0.071 0.117
�92 0.7 0.015 0.069 0.133 0.009 0.067 0.118
�10,2 0.7 0.005 0.063 0.130 0.003 0.067 0.118
�0 0 �0.033 0.069 0.177 �0.027 0.066 0.168
�12 0.3 0.075 0.094 0.219 0.075 0.087 0.211
�55 0.35 0.001 0.040 0.041 0.006 0.029 0.029
�66 0.35 0.012 0.038 0.042 0.006 0.028 0.029
�jj 0.51 0.007 0.058 0.059 0.006 0.042 0.041

Note. �0 averaged across all zero loading estimates.
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Additional simulation studies were also conducted for a more
complex loading structure in Study 2 (18 items, three factors). The
model settings were the same as those of Study 2 except that the
data were generated with diagonal �. In the E-step, the model was

fitted with one specified loading per factor (that is, �11 for Factor
1, �82 for Factor 2, and �15,3 for Factor 3) or no specified loadings
(that is, all loadings were unspecified). The results can be found in
Table D7 and D8 and can be compared with those in Table D4.

Table D4
E-Step Results With True Diagonal � and Two Specified Loadings per Factor (18 Items, Three Factors)

Par True

N � 250 N � 500

BIAS RMSE SE BIAS RMSE SE

�11 0.5 0.023 0.066 0.105 0.018 0.045 0.087
�21 0.7 0.023 0.065 0.094 0.024 0.062 0.077
�31 0.7 0.014 0.068 0.093 0.027 0.061 0.077
�41 0.7 0.007 0.057 0.092 0.013 0.052 0.076
�51 0.7 0.020 0.060 0.093 0.015 0.051 0.077
�61 0.5 �0.001 0.057 0.108 �0.009 0.045 0.092
�71 0.5 �0.005 0.056 0.107 �0.005 0.048 0.092
�18,1 0.5 0.000 0.062 0.105 0.013 0.042 0.086
�62 0.5 �0.007 0.055 0.109 �0.009 0.043 0.093
�72 0.5 �0.012 0.068 0.108 �0.010 0.043 0.093
�82 0.7 0.033 0.074 0.099 0.021 0.052 0.080
�92 0.7 0.014 0.065 0.097 0.016 0.049 0.080
�10,2 0.7 0.016 0.069 0.097 0.006 0.045 0.079
�11,2 0.7 0.009 0.057 0.097 0.011 0.048 0.079
�12,2 0.5 �0.020 0.061 0.108 �0.005 0.041 0.091
�13,2 0.5 �0.009 0.056 0.108 �0.003 0.047 0.091
�13 0.5 �0.016 0.064 0.110 �0.019 0.044 0.092
�12,3 0.5 �0.009 0.064 0.106 �0.012 0.047 0.090
�13,3 0.5 �0.010 0.061 0.106 �0.011 0.048 0.091
�14,3 0.7 0.006 0.063 0.095 0.003 0.062 0.080
�15,3 0.7 0.018 0.067 0.096 0.013 0.059 0.080
�16,3 0.7 0.022 0.068 0.097 0.014 0.068 0.080
�17,3 0.7 �0.003 0.059 0.094 0.004 0.054 0.080
�18,3 0.5 �0.016 0.063 0.108 �0.024 0.049 0.092
�0 0 �0.019 0.052 0.114 �0.018 0.045 0.101

Note. �0 averaged across all zero loading estimates.

Table D5
E-Step Results With One Specified Loading per Factor (10 Items, Two Factors)

Par True

N � 250 N � 500

BIAS RMSE SE BIAS RMSE SE

�11 0.7 �0.036 0.147 0.193 �0.023 0.114 0.149
�21 0.7 �0.057 0.143 0.187 �0.025 0.106 0.150
�31 0.7 �0.056 0.148 0.187 �0.022 0.115 0.148
�41 0.7 �0.054 0.141 0.190 �0.038 0.111 0.146
�51 0.5 �0.011 0.059 0.159 �0.017 0.053 0.145
�61 0.5 �0.018 0.069 0.159 �0.021 0.053 0.147
�52 0.5 �0.023 0.063 0.160 �0.025 0.053 0.146
�62 0.5 �0.023 0.066 0.158 �0.012 0.051 0.146
�72 0.7 �0.056 0.150 0.188 �0.017 0.099 0.145
�82 0.7 �0.061 0.155 0.187 �0.020 0.100 0.145
�92 0.7 �0.061 0.160 0.190 �0.020 0.096 0.144
�10,2 0.7 �0.058 0.151 0.188 �0.020 0.102 0.144
�0 0 0.029 0.142 0.226 �0.002 0.102 0.197

(Appendices continue)
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Similar to the above, the estimates in the case of no specified loading
(Table D8) were poor. In contrast, the case of one specified loading
per factor (Table D7) was acceptable, but slightly worse than the case
of two specified loadings per factor (Table D4) in general.

In sum, the case of one specified loading per factor was accept-
able in general and can serve as the minimum constraint, while two

or more specified loadings per factor is preferred for more stable
performance in the E-step.

The same simulated data sets were also used to investigate the
same issue with the C-step. Table D2 above revealed that the
C-step performed poorly up to three specified loadings per factor.
In contrast, Table D9 confirmed that the constraint of one specified

Table D6
E-Step Results With All Loadings Being Unspecified (10 Items, Two Factors)

Par True

N � 250 N � 500

BIAS RMSE SE BIAS RMSE SE

�11 0.7 �0.385 0.474 0.289 �0.361 0.464 0.269
�21 0.7 �0.378 0.462 0.280 �0.352 0.460 0.269
�31 0.7 �0.380 0.464 0.281 �0.356 0.462 0.273
�41 0.7 �0.381 0.466 0.286 �0.356 0.454 0.264
�51 0.5 �0.017 0.063 0.173 �0.034 0.069 0.166
�61 0.5 �0.022 0.065 0.173 �0.030 0.061 0.168
�52 0.5 �0.018 0.063 0.173 �0.012 0.058 0.163
�62 0.5 �0.021 0.059 0.173 �0.007 0.057 0.165
�72 0.7 �0.384 0.470 0.290 �0.334 0.432 0.265
�82 0.7 �0.380 0.467 0.285 �0.335 0.433 0.263
�92 0.7 �0.384 0.469 0.290 �0.334 0.436 0.262
�10,2 0.7 �0.391 0.473 0.283 �0.337 0.433 0.260
�0 0 0.355 0.445 0.283 0.317 0.425 0.267

Note. �0 averaged across all zero loading estimates.

Table D7
E-Step Results With One Specified Loading per Factor (18 Items, Three Factors)

Par True

N � 250 N � 500

BIAS RMSE SE BIAS RMSE SE

�11 0.5 0.015 0.086 0.133 0.012 0.077 0.102
�21 0.7 �0.072 0.219 0.130 �0.027 0.158 0.095
�31 0.7 �0.071 0.223 0.131 �0.018 0.159 0.097
�41 0.7 �0.081 0.224 0.132 �0.028 0.154 0.094
�51 0.7 �0.068 0.218 0.135 �0.030 0.162 0.097
�61 0.5 �0.049 0.153 0.127 �0.031 0.104 0.105
�71 0.5 �0.052 0.153 0.127 �0.028 0.111 0.105
�18,1 0.5 �0.009 0.087 0.131 0.008 0.071 0.100
�62 0.5 �0.019 0.082 0.125 �0.009 0.044 0.102
�72 0.5 �0.024 0.096 0.125 �0.011 0.048 0.103
�82 0.7 �0.018 0.180 0.126 0.002 0.120 0.092
�92 0.7 �0.047 0.175 0.122 �0.010 0.117 0.090
�10,2 0.7 �0.032 0.183 0.124 �0.015 0.122 0.091
�11,2 0.7 �0.040 0.176 0.123 �0.008 0.119 0.090
�12,2 0.5 �0.040 0.117 0.126 �0.017 0.082 0.106
�13,2 0.5 �0.031 0.115 0.126 �0.014 0.086 0.107
�13 0.5 �0.047 0.118 0.128 �0.029 0.074 0.103
�12,3 0.5 �0.057 0.151 0.128 �0.035 0.118 0.104
�13,3 0.5 �0.054 0.147 0.128 �0.034 0.113 0.105
�14,3 0.7 �0.080 0.230 0.134 �0.030 0.159 0.093
�15,3 0.7 �0.068 0.234 0.132 �0.028 0.173 0.095
�16,3 0.7 �0.081 0.236 0.132 �0.028 0.173 0.093
�17,3 0.7 �0.088 0.226 0.130 �0.033 0.171 0.093
�18,3 0.5 �0.044 0.115 0.125 �0.032 0.072 0.102
�0 0 0.020 0.142 0.138 0.000 0.101 0.115

(Appendices continue)
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loading per item was still appropriate even when the residuals in
the true model were assumed to be independent.

Additional simulation studies were conducted to compare the
performance of the E-step with the BSEM approach using the
ridge regression priors proposed by Muthén and Asparouhov

(2012) in estimating the loadings. The BSEM approach relies on
normal priors concentrated around zero with small variance. Mplus
was used to analyze the same simulated data sets with diagonal �.
The results of loading estimates are presented in Tables D10 and
D11. Compared with Tables D3 and D4, the E-step with the

Table D8
E-Step Results With All Loadings Being Unspecified (18 Items, Three Factors)

Par True

N � 250 N � 500

BIAS RMSE SE BIAS RMSE SE

�11 0.5 �0.173 0.275 0.159 �0.169 0.293 0.116
�21 0.7 �0.452 0.557 0.165 �0.467 0.578 0.131
�31 0.7 �0.446 0.555 0.168 �0.462 0.575 0.132
�41 0.7 �0.461 0.565 0.167 �0.470 0.578 0.132
�51 0.7 �0.453 0.561 0.170 �0.474 0.579 0.131
�61 0.5 �0.159 0.276 0.161 �0.191 0.304 0.121
�71 0.5 �0.179 0.290 0.159 �0.191 0.306 0.121
�18,1 0.5 �0.172 0.273 0.158 �0.167 0.288 0.115
�62 0.5 �0.191 0.295 0.160 �0.178 0.301 0.123
�72 0.5 �0.179 0.287 0.158 �0.175 0.301 0.123
�82 0.7 �0.451 0.559 0.178 �0.484 0.589 0.131
�92 0.7 �0.449 0.543 0.176 �0.476 0.579 0.130
�10,2 0.7 �0.441 0.553 0.177 �0.481 0.584 0.129
�11,2 0.7 �0.439 0.546 0.176 �0.479 0.581 0.131
�12,2 0.5 �0.164 0.270 0.153 �0.178 0.297 0.121
�13,2 0.5 �0.161 0.268 0.152 �0.177 0.297 0.123
�13 0.5 �0.164 0.277 0.158 �0.195 0.313 0.118
�12,3 0.5 �0.196 0.300 0.154 �0.174 0.291 0.121
�13,3 0.5 �0.188 0.295 0.155 �0.172 0.294 0.122
�14,3 0.7 �0.463 0.567 0.172 �0.490 0.586 0.134
�15,3 0.7 �0.475 0.568 0.175 �0.487 0.586 0.133
�16,3 0.7 �0.452 0.552 0.177 �0.491 0.588 0.134
�17,3 0.7 �0.467 0.561 0.175 �0.488 0.588 0.132
�18,3 0.5 �0.179 0.288 0.156 �0.201 0.320 0.116
�0 0 0.230 0.374 0.174 0.245 0.405 0.127

Note. �0 averaged across all zero loading estimates.

Table D9
C-Step Results With One Specified Loading per Item (10 Items, Two Factors)

Par True

N � 250 N � 500

BIAS RMSE SE BIAS RMSE SE

�11 0.7 �0.015 0.066 0.119 �0.020 0.047 0.096
�21 0.7 �0.021 0.063 0.117 �0.018 0.046 0.095
�31 0.7 �0.022 0.065 0.118 �0.019 0.052 0.096
�41 0.7 �0.018 0.067 0.117 �0.028 0.046 0.095
�51 0.5 0.016 0.059 0.120 0.004 0.040 0.101
�61 0.5 �0.089 0.110 0.137 �0.067 0.079 0.116
�52 0.5 �0.083 0.102 0.137 �0.071 0.080 0.116
�62 0.5 0.017 0.059 0.121 0.010 0.040 0.102
�72 0.7 �0.022 0.055 0.118 �0.014 0.048 0.098
�82 0.7 �0.021 0.064 0.119 �0.016 0.048 0.097
�92 0.7 �0.020 0.062 0.119 �0.016 0.044 0.097
�10,2 0.7 �0.029 0.063 0.116 �0.020 0.050 0.096
�0 0 �0.012 0.034 0.105 �0.013 0.027 0.094

Note. �0 averaged across all zero loading estimates.

(Appendices continue)
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Bayesian Lasso was better in terms of BIAS and RMSE. More impor-
tantly, the Type I error rates for the BSEM approach were high, making
it likely to misidentify truly zero loadings as significant.

To better understand whether the bias in the E-step is a function
of the residual correlations, additional simulation studies were
conducted. The settings were similar to those of Study 1, except

that the data were generated with two additional level of residual
correlations (0.3 and 0.7). Comparing the results (Tables D12 and
D13) with the case of no correlated residual (Table D3), it seems
that the bias was a function of the residual correlations to some
extent, and the bias became larger when the residual correlation
increased.

Table D11
Loading Estimates for BSEM With the Ridge Regression Priors (18 Items, Three Factors)

Par True

N � 250 N � 500

BIAS RMSE SE SIG% BIAS RMSE SE SIG%

�11 0.5 0.156 0.187 0.120 1.000 �0.008 0.044 0.061 1.000
�21 0.7 �0.133 0.188 0.117 1.000 0.006 0.048 0.056 1.000
�31 0.7 �0.412 0.439 0.076 0.729 �0.105 0.111 0.046 1.000
�41 0.7 �0.415 0.440 0.076 0.708 �0.117 0.122 0.046 1.000
�51 0.7 �0.406 0.434 0.076 0.708 �0.118 0.123 0.046 1.000
�61 0.5 �0.260 0.270 0.075 0.958 �0.110 0.114 0.050 1.000
�71 0.5 �0.266 0.275 0.075 0.917 �0.106 0.112 0.051 1.000
�18,1 0.5 �0.181 0.200 0.076 1.000 �0.065 0.073 0.054 1.000
�62 0.5 �0.202 0.217 0.067 1.000 �0.070 0.076 0.050 1.000
�72 0.5 �0.206 0.224 0.067 0.979 �0.073 0.079 0.051 1.000
�82 0.7 �0.056 0.156 0.103 1.000 0.045 0.063 0.058 1.000
�92 0.7 �0.064 0.145 0.102 1.000 0.038 0.061 0.058 1.000
�10,2 0.7 �0.314 0.356 0.072 0.708 �0.098 0.103 0.047 1.000
�11,2 0.7 �0.269 0.291 0.057 1.000 �0.122 0.124 0.038 1.000
�12,2 0.5 �0.069 0.131 0.057 1.000 0.078 0.082 0.038 1.000
�13,2 0.5 �0.160 0.187 0.067 1.000 �0.010 0.040 0.047 1.000
�13 0.5 �0.393 0.415 0.096 0.292 �0.137 0.140 0.055 1.000
�12,3 0.5 �0.312 0.323 0.073 0.604 �0.182 0.184 0.048 1.000
�13,3 0.5 �0.292 0.305 0.075 0.667 �0.158 0.161 0.048 1.000
�14,3 0.7 �0.432 0.456 0.074 0.667 �0.148 0.153 0.045 1.000
�15,3 0.7 �0.184 0.215 0.116 1.000 �0.041 0.057 0.053 1.000
�16,3 0.7 �0.174 0.207 0.116 1.000 �0.041 0.071 0.053 1.000
�17,3 0.7 �0.434 0.456 0.074 0.667 �0.144 0.148 0.044 1.000
�18,3 0.5 �0.197 0.211 0.076 1.000 �0.131 0.135 0.053 1.000
�0 0 0.026 0.105 0.079 0.181 �0.053 0.073 0.057 0.188

Note. �0 averaged across all zero loading estimates.

(Appendices continue)

Table D10
Loading Estimates for BSEM With the Ridge Regression Priors (10 Items, Two Factors)

Par True

N � 250 N � 500

BIAS RMSE SE SIG% BIAS RMSE SE SIG%

�11 0.7 �0.199 0.220 0.111 1.000 0.016 0.055 0.057 1.000
�21 0.7 �0.193 0.211 0.112 1.000 0.019 0.052 0.057 1.000
�31 0.7 �0.459 0.466 0.076 0.990 �0.119 0.130 0.047 1.000
�41 0.7 �0.456 0.464 0.076 1.000 �0.129 0.137 0.046 1.000
�51 0.5 �0.156 0.158 0.073 1.000 �0.1 0.105 0.050 1.000
�61 0.5 �0.161 0.162 0.072 1.000 �0.104 0.107 0.050 1.000
�52 0.5 �0.158 0.160 0.073 1.000 �0.113 0.116 0.049 1.000
�62 0.5 �0.160 0.162 0.073 1.000 �0.103 0.107 0.050 1.000
�72 0.7 �0.460 0.468 0.076 1.000 �0.116 0.126 0.047 1.000
�82 0.7 �0.460 0.467 0.076 1.000 �0.12 0.130 0.046 1.000
�92 0.7 �0.192 0.211 0.113 1.000 0.02 0.052 0.057 1.000
�10,2 0.7 �0.201 0.215 0.111 1.000 0.013 0.052 0.057 1.000
�0 0 0.090 0.125 0.087 0.446 �0.087 0.100 0.060 0.334
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To better understand whether the bias in the E-step is a function of
the sparsity of the residual covariance matrix, additional simulation
studies were conducted. The settings were similar to those of Study 1
except that the data were generated with four residual correlations
each with a magnitude of 0.3. Comparing the results (Table D14) with
the case of two residual correlations each with the same magnitude
(Table D12), it seems the difference was not significant. More work
is needed to systematically investigate this issue.

To better understand whether the bias in the E-step diminishes
when the cross-loadings are close to zero, additional simulation

studies were conducted. The settings were similar to those of Study
1 except that the data were generated with residual correlations of
0.3 and no cross-loadings. Comparing the results in Table D15
with those in Table D12 above, the bias seemed to diminish a little
bit but still existed when the cross-loadings were closed to zero.

To better understand how the Bayesian Lasso works when the
aim is to estimate the residual covariance matrix, additional
simulation studies were conducted. The settings were similar as
those of Study 1 and 2 except that the loading structure was
assumed to be known in the C-step (i.e., all the nonzero load-

Table D12
E-Step Results With Two Specified Loadings per Factor (Residual Correlation � .3)

Par True

N � 250 N � 500

BIAS RMSE SE BIAS RMSE SE

�11 0.7 0.102 0.123 0.122 0.110 0.121 0.107
�21 0.7 0.113 0.137 0.123 0.107 0.116 0.107
�31 0.7 �0.035 0.069 0.110 �0.028 0.062 0.093
�41 0.7 �0.066 0.095 0.109 �0.054 0.073 0.091
�51 0.5 �0.043 0.072 0.139 �0.050 0.068 0.125
�61 0.5 �0.053 0.081 0.140 �0.052 0.069 0.124
�52 0.5 �0.007 0.059 0.135 0.003 0.047 0.116
�62 0.5 0.002 0.059 0.133 0.001 0.046 0.116
�72 0.7 �0.005 0.068 0.112 0.011 0.047 0.091
�82 0.7 0.005 0.066 0.114 0.017 0.049 0.091
�92 0.7 0.026 0.079 0.116 0.026 0.056 0.093
�10,2 0.7 0.028 0.071 0.117 0.026 0.060 0.093
�0 0 �0.039 0.078 0.163 �0.039 0.070 0.150
�12 0.3 0.083 0.101 0.209 0.090 0.100 0.197
�55 0.35 0.017 0.045 0.042 0.016 0.034 0.029
�66 0.35 0.014 0.044 0.042 0.016 0.034 0.029
�jj 0.51 �0.007 0.080 0.057 �0.012 0.065 0.040

Table D13
E-Step Results With Two Specified Loadings per Factor (Residual Correlation � .7)

Par True

N � 250 N � 500

BIAS RMSE SE BIAS RMSE SE

�11 0.7 0.249 0.255 0.114 0.244 0.252 0.108
�21 0.7 0.247 0.253 0.113 0.245 0.254 0.108
�31 0.7 �0.196 0.207 0.091 �0.193 0.201 0.077
�41 0.7 �0.233 0.248 0.095 �0.224 0.231 0.083
�51 0.5 �0.195 0.204 0.131 �0.193 0.198 0.124
�61 0.5 �0.187 0.195 0.130 �0.185 0.192 0.124
�52 0.5 0.100 0.112 0.098 0.107 0.116 0.087
�62 0.5 0.098 0.114 0.099 0.105 0.114 0.088
�72 0.7 0.019 0.070 0.089 0.033 0.069 0.079
�82 0.7 �0.008 0.062 0.088 0.000 0.057 0.078
�92 0.7 0.002 0.061 0.089 �0.002 0.058 0.078
�10,2 0.7 0.014 0.069 0.090 0.006 0.056 0.079
�0 0 �0.003 0.113 0.136 �0.001 0.117 0.131
�12 0.3 0.058 0.081 0.187 0.062 0.079 0.184
�55 0.35 0.056 0.070 0.045 0.043 0.054 0.031
�66 0.35 0.052 0.069 0.045 0.045 0.054 0.031
�jj 0.51 �0.036 0.161 0.053 �0.042 0.149 0.037

Note. �jj averaged across elements from j � 1 to 4 and 7 to 10; �0 averaged across all zero loading estimates.

(Appendices continue)
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ings including the cross-loadings were assumed to be specified
and all the zero loadings were fixed to zero). The results in
Table D16 showed that, by assuming the loading structure as
known, the power of detecting the within-factor nonzero resid-
ual covariance was still low, but higher than that with an
unknown structure in Table 4 (0.020 vs. 0.005 in sample size
250; 0.200 vs. 0.040 in sample size 500). The power of detect-
ing the between-factor nonzero residual covariance was satis-
factory and higher than that in Table 4 (0.830 vs. 0.755 in
sample size 250; 0.980 vs. 0.915 in sample size 500). It is

interesting to observe that, similar to Table 4, the estimates of
�11 and �21 were positively biased and the estimate of �21 was
negatively biased. Moreover, the estimate of the between-factor
residual covariance �74 was also more accurate and stable than
that of the within-factor residual covariance �21. Accordingly,
the cases of known and unknown loading structures in the
C-step exhibited similar patterns, and the power of detecting the
nonzero off-diagonal elements of the covariance matrix was not
only related to the Bayesian Lasso estimation, but also related
to the position of the nonzero elements (that is, within factor or

Table D14
E-Step With Bayesian Lasso in Estimating the Loadings (Four Residual Correlations Each With a Magnitude of 0.3)

Par True

N � 250 N � 500

BIAS RMSE SE BIAS RMSE SE

�11 0.7 0.095 0.121 0.125 0.094 0.109 0.109
�21 0.7 0.090 0.115 0.125 0.083 0.102 0.109
�31 0.7 �0.024 0.079 0.115 �0.020 0.053 0.098
�41 0.7 �0.051 0.077 0.113 �0.048 0.074 0.096
�51 0.5 �0.066 0.091 0.137 �0.075 0.090 0.125
�61 0.5 �0.055 0.080 0.135 �0.071 0.084 0.125
�52 0.5 �0.003 0.061 0.129 0.008 0.050 0.114
�62 0.5 �0.015 0.068 0.129 0.008 0.048 0.114
�72 0.7 0.005 0.066 0.114 0.015 0.057 0.099
�82 0.7 0.035 0.082 0.120 0.048 0.073 0.103
�92 0.7 0.002 0.072 0.114 �0.006 0.054 0.096
�10,2 0.7 �0.010 0.071 0.113 �0.008 0.060 0.096
�0 0 �0.028 0.069 0.163 �0.030 0.063 0.151
�12 0.3 0.107 0.121 0.205 0.104 0.114 0.195
�55 0.35 0.031 0.053 0.043 0.028 0.041 0.030
�66 0.35 0.034 0.056 0.043 0.033 0.045 0.030
�jj 0.51 �0.008 0.076 0.058 �0.010 0.065 0.041

Note. �jj averaged across elements from j � 1 to 4 and 7 to 10; �0 averaged across all zero loading.

Table D15
E-Step With Bayesian Lasso Priors in Estimating the Loadings (No Cross-Loading)

Par True

N � 250 N � 500

BIAS RMSE SE BIAS RMSE SE

�11 0.7 0.092 0.110 0.076 0.097 0.106 0.055
�21 0.7 0.091 0.107 0.076 0.098 0.108 0.055
�31 0.7 �0.068 0.094 0.075 �0.045 0.067 0.054
�41 0.7 �0.067 0.094 0.077 �0.065 0.078 0.055
�51 0.5 �0.042 0.089 0.075 �0.041 0.058 0.053
�62 0.5 �0.023 0.057 0.075 �0.004 0.045 0.054
�72 0.7 �0.007 0.070 0.074 �0.005 0.052 0.054
�82 0.7 �0.019 0.066 0.074 �0.003 0.050 0.053
�92 0.7 �0.003 0.067 0.074 0.008 0.041 0.054
�10,2 0.7 0.013 0.063 0.075 0.003 0.043 0.054
�0 0 0.011 0.058 0.104 0.008 0.042 0.090
�12 0.3 �0.023 0.073 0.167 �0.022 0.059 0.152
�55 0.75 0.017 0.076 0.074 0.029 0.066 0.053
�66 0.75 0.010 0.076 0.074 0.010 0.051 0.052
�jj 0.51 �0.011 0.085 0.060 �0.014 0.073 0.042

Note. �jj averaged across elements from j � 1 to 4 and 7 to 10; �0 averaged across all zero loading estimates.

(Appendices continue)
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between factor). However, more work might be needed to
systematically investigate this issue.

To study how the value of the correlation of the residuals of
variables that load to the same factor influence the estimation of
the true covariance structure using the Bayesian Lasso, addi-
tional simulation studies were conducted. The settings were
similar to those of Study 1 except that the data were generated
by � with nonzero within-factor residual covariance �12 and all
other off-diagonal elements equal to 0. Two levels of residual
correlations (0.3 and 0.7) were considered, which led to �12 �
�21 � 0.152 and �12 � �21 � 0.357, respectively. For ease of
comparison, we only focused on the estimates of the elements
in the residual covariance matrix. The results presented in
Tables D17 and D18 indicate that the power of detecting the
nonzero �12 was low whether the residual correlation was low
(0.3) or high (0.7) and could be improved with a larger sample
size. However, the accuracy and stability of estimates, in terms
of BIAS and SE, became poorer when the correlation increased.

To study how the value of the correlation of the residuals of
variables that load to different factors influences the estimation
of the true covariance structure using the Bayesian Lasso,
additional simulation studies were conducted. The settings were
similar to those of Study 1 except that the data were generated
by � with nonzero between-factor residual covariance �74 and
with all other off-diagonal elements equal to zero. Two levels of
residual correlations (0.3 and 0.7) were considered, which led to
�74 � �47 � 0.152 and �74 � �47 � 0.357, respectively. The
results presented in Tables D19 and D20 indicate that the power
of detecting the nonzero �74 was low when the residual corre-
lation was low (0.3), but became satisfactory (�0.800) when
the residual correlation was high (0.7). Moreover, the power
improved with a larger sample size. Similar to the above, the
accuracy and stability of estimates, in terms of BIAS and SE,
became poorer when the correlation increased. However, more
work might be needed to systematically investigate this
issue.

Table D16
C-Step With Known Loading Structure (10 Items, Two Factors)

Par True

N � 250 N � 500

BIAS RMSE SE SIG% BIAS RMSE SE SIG%

�11 0.7 0.096 0.120 0.097 1.000 0.086 0.096 0.084 1.000
�21 0.7 0.098 0.121 0.098 1.000 0.089 0.100 0.084 1.000
�31 0.7 �0.042 0.072 0.097 1.000 �0.029 0.055 0.080 1.000
�41 0.7 �0.085 0.102 0.083 1.000 �0.075 0.086 0.067 1.000
�51 0.5 �0.026 0.065 0.088 1.000 �0.036 0.055 0.069 1.000
�61 0.5 �0.035 0.064 0.087 1.000 �0.033 0.051 0.068 1.000
�52 0.5 �0.010 0.048 0.087 1.000 �0.008 0.035 0.068 1.000
�62 0.5 �0.006 0.056 0.087 1.000 �0.011 0.039 0.068 1.000
�72 0.7 �0.072 0.092 0.083 1.000 �0.055 0.069 0.065 1.000
�82 0.7 �0.002 0.063 0.090 1.000 0.005 0.041 0.071 1.000
�92 0.7 �0.003 0.064 0.090 1.000 �0.003 0.042 0.071 1.000
�10,2 0.7 0.010 0.063 0.090 1.000 0.005 0.042 0.071 1.000
�12 0.3 �0.029 0.084 0.101 0.830 �0.027 0.064 0.075 0.980
�21 0.3 �0.136 0.144 0.117 0.020 �0.126 0.131 0.110 0.200
�74 0.3 0.007 0.049 0.069 1.000 0.007 0.037 0.052 1.000
�55 0.35 0.085 0.096 0.093 1.000 0.074 0.080 0.081 1.000
�66 0.35 0.079 0.089 0.092 1.000 0.070 0.077 0.079 1.000
�jj 0.51 0.011 0.097 0.109 1.000 0.003 0.078 0.094 1.000
�0 0 0.022 0.041 0.060 0.003 0.019 0.035 0.050 0.003

Note. �jj averaged across elements from j � 1 to 4 and 7 to 10; �0 averaged across all zero residual covariance estimates.

Table D17
C-Step With the Residuals of Variables That Load to the Same Factor (Residual Correlation � .3)

Par True

N � 250 N � 500

BIAS RMSE SE SIG% BIAS RMSE SE SIG%

�21 0.153 �0.023 0.038 0.105 0.000 �0.029 0.041 0.094 0.010
�55 0.35 0.055 0.066 0.088 1.000 0.052 0.060 0.071 1.000
�66 0.35 0.058 0.068 0.087 1.000 0.044 0.051 0.069 1.000
�jj 0.51 0.042 0.072 0.114 1.000 0.030 0.056 0.096 1.000
�0 0 0.015 0.035 0.067 0.000 0.012 0.029 0.056 0.000

(Appendices continue)
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Table D18
C-Step With the Residuals of Variables That Load to the Same Factor (Residual Correlation � .7)

Par True

N � 250 N � 500

BIAS RMSE SE SIG% BIAS RMSE SE SIG%

�21 0.357 �0.155 0.162 0.165 0.010 �0.133 0.141 0.161 0.070
�55 0.35 0.102 0.112 0.120 1.000 0.083 0.091 0.100 1.000
�66 0.35 0.092 0.103 0.114 1.000 0.076 0.082 0.097 1.000
�jj 0.51 0.025 0.109 0.138 1.000 0.020 0.093 0.124 1.000
�0 0 0.026 0.045 0.082 0.000 0.021 0.039 0.072 0.000

Note. �jj averaged across elements from j � 1 to 4 and 7 to 10; �0 averaged across all zero loading estimates; �0 averaged across all zero residual
covariance estimates.

Table D19
C-Step With the Residuals of Variables That Load to Different Factors (Residual Correlation � .3)

Par True

N � 250 N � 500

BIAS RMSE SE SIG% BIAS RMSE SE SIG%

�74 0.153 �0.070 0.077 0.070 0.020 �0.060 0.066 0.061 0.110
�55 0.35 0.053 0.064 0.086 1.000 0.048 0.055 0.070 1.000
�66 0.35 0.056 0.069 0.087 1.000 0.043 0.051 0.069 1.000
�jj 0.51 0.049 0.070 0.110 1.000 0.036 0.051 0.093 1.000
�0 0 0.015 0.037 0.067 0.000 0.012 0.030 0.057 0.000

Table D20
C-Step With the Residuals of Variables That Load to Different Factors (Residual Correlation � .7)

Par True

N � 250 N � 500

BIAS RMSE SE SIG% BIAS RMSE SE SIG%

�74 0.357 �0.102 0.111 0.103 0.890 �0.088 0.092 0.091 0.980
�55 0.35 0.078 0.089 0.100 1.000 0.062 0.069 0.078 1.000
�66 0.35 0.081 0.090 0.099 1.000 0.061 0.067 0.077 1.000
�jj 0.51 0.041 0.066 0.120 1.000 0.026 0.046 0.100 1.000
�0 0 0.019 0.040 0.076 0.000 0.014 0.031 0.062 0.000

Note. �jj averaged across elements from j � 1 to 4 and 7 to 10; �0 averaged across all zero loading estimates; �0 averaged across all zero residual
covariance estimates.

(Appendices continue)
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Appendix E

Humor Styles Questionnaire

Item Content Factor

1 I usually don’t laugh or joke around much with other people F1
2 If I am feeling depressed, I can usually cheer myself up with humor F2
3 If someone makes a mistake, I will often tease them about it F3
4 I let people laugh at me or make fun at my expense more than I should F4
5 I don’t have to work very hard at making other people laugh—I seem to be a naturally

humorous person
F1

6 Even when I’m by myself, I’m often amused by the absurdities of life F2
7 People are never offended or hurt by my sense of humor F3
8 I will often get carried away in putting myself down if it makes my family or friends laugh F4
9 I rarely make other people laugh by telling funny stories about myself F1

10 If I am feeling upset or unhappy I usually try to think of something funny about the
situation to make myself feel better

F2

11 When telling jokes or saying funny things, I am usually not very concerned about how
other people are taking it

F3

12 I often try to make people like or accept me more by saying something funny about my
own weaknesses, blunders, or faults

F4

13 I laugh and joke a lot with my closest friends F1
14 My humorous outlook on life keeps me from getting overly upset or depressed about things F2
15 I do not like it when people use humor as a way of criticizing or putting someone down F3
16 I don’t often say funny things to put myself down F4
17 I usually don’t like to tell jokes or amuse people F1
18 If I’m by myself and I’m feeling unhappy, I make an effort to think of something funny to

cheer myself up
F2

19 Sometimes I think of something that is so funny that I can’t stop myself from saying it,
even if it is not appropriate for the situation

F3

20 I often go overboard in putting myself down when I am making jokes or trying to be funny F4
21 I enjoy making people laugh F1
22 If I am feeling sad or upset, I usually lose my sense of humor F2
23 I never participate in laughing at others even if all my friends are doing it F3
24 When I am with friends or family, I often seem to be the one that other people make fun

of or joke about
F4

25 I don’t often joke around with my friends F1
26 It is my experience that thinking about some amusing aspect of a situation is often a very

effective way of coping with problems
F2

27 If I don’t like someone, I often use humor or teasing to put them down F3
28 If I am having problems or feeling unhappy, I often cover it up by joking around, so that

even my closest friends don’t know how I really feel
F4

29 I usually can’t think of witty things to say when I’m with other people F1
30 I don’t need to be with other people to feel amused—I can usually find things to laugh

about even when I’m by myself
F2

31 Even if something is really funny to me, I will not laugh or joke about it if someone will
be offended

F3

32 Letting others laugh at me is my way of keeping my friends and family in good spirits F4

Note. F1 � affiliative humor; F2 � self-enhancing humor; F3 � aggressive humor; F3 � self-defeating humor.
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