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RESEARCH ARTICLE

The Influence of Using Inaccurate Priors on Bayesian Multilevel Estimation

Shufang Zhenga, Lijin Zhanga,b , Zhehan Jiangc and Junhao Pana

aSun Yat-sen University; bStanford University; cPeking University

ABSTRACT
Researchers in psychology, education, and organizational behavior often encounter multilevel data
with hierarchical structures. Bayesian approach is usually more advantageous than traditional fre-
quentist-based approach in small sample sizes, but it is also more susceptible to the subjective specifi-
cation of priors. To investigate the potentially detrimental effects of inaccurate prior information on
Bayesian approach and compare its performance with that of traditional method, a series of simula-
tions was conducted under a multilevel model framework with different settings. The results reveal
the devastating impacts of inaccurate prior information on Bayesian estimation, especially in the cases
of larger intraclass correlation coefficient, smaller level 2 sample size, and smaller prior variance. When
the dependent variable is non-normal or binary, these negative effects are more noticeable. The pre-
sent study investigated the impacts of inaccurate prior information and provides advice on the specifi-
cation of priors.
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1. Introduction

Data with hierarchical structures are common in research on
psychology, education, and organizational behavior (Aryee
et al., 2012; Holtmann et al., 2016; Hox et al., 2017). In these
data, participants tend to respond similarly to others within
the same cluster. However, the dependence of these observa-
tions may violate the basic assumption of the model and are
likely to result in biased parameter estimations (Rutterford
et al., 2015; van Breukelen & Candel, 2012).

Considering the statistical problems caused by observa-
tions that are dependent within the same cluster, researchers
are often suggested to conduct multilevel modeling (Ryu,
2015). Traditionally, multilevel models are estimated under
the frequentist framework, relying on large samples and
asymptotic normality (McNeish, 2016a). When the sample
size is relatively small, frequentist estimators may encounter
model convergence and parameter estimation problems
(Depaoli & Clifton, 2015; McNeish, 2016a; McNeish &
Stapleton, 2016; Schoeneberger, 2016).

As an alternative to the traditional frequentist approach,
Bayesian estimation is advantageous for dealing with small
sample sizes and can incorporate prior information to better
estimate the parameters (McNeish, 2016a). However, when
the sample size is small, the shapes of the posterior distribu-
tions are dominated by priors (Lynch, 2007). Considering
the small-sample problems in multilevel modeling
(Campbell & Walters, 2014), the issues of incorrect prior
information of Bayesian estimation may be more prominent.
Therefore, more relevant studies are needed to investigate
the impacts of incorrect informative priors on Bayesian

analysis (Finch & Miller, 2019; Holtmann et al., 2016), espe-
cially under the framework of multilevel modeling.

2. Multilevel Modeling

2.1. Multilevel Modeling and cRCT Trials

Multilevel modeling is frequently used to deal with dependent
observations in the analysis of clustered data (Ryu, 2015). In
multilevel models, the sources of variation are decomposed
into different levels and can be further explained by predic-
tors at different levels (Heck & Thomas, 2020). Multilevel
modeling often requires large sample sizes at both levels to
obtain unbiased estimates, but it can be challenging in col-
lecting multilevel data because of high financial cost and geo-
graphic sparsity (Campbell & Walters, 2014).

As a typical multilevel research design, the cluster
randomized controlled trial (cRCT) is also prone to the
problems arising from small sample sizes (McNeish, 2016a).
Generally, randomized controlled trials (RCT) are the gold
standard of experimental study designs (Campbell &
Walters, 2014; Rutterford et al., 2015). However, researchers
are often encouraged to conduct experiments on groups
(i.e., cRCT) rather than on each subject separately (i.e.,
RCT). This preference primarily occurs if there is a high
risk of treatment contamination1 (Campbell, 2019; Campbell
& Walters, 2014; Donner & Zou, 2004; Rutterford et al.,
2015). In addition, many researchers prefer cRCT because it
can improve treatment efficiency, convenience, and compli-
ance (Donner & Zou, 2004; Rutterford et al., 2015).
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Therefore, although cRCTs are prone to the problems aris-
ing from small sample sizes, they are widely used for
research in psychology (especially in clinical psychology),
sociology, and education (Campbell, 2019; Ribeiro
et al., 2018).

To increase the generalizability of the research, we
focused on a multilevel model with a random intercept and
random slopes. This model is also common in standard
cRCT research. As shown in Figure 1, for the ith individual
in the jth group, the outcome variable is defined as follows
(McNeish, 2016a):

Yij ¼ b0j þ b1jX1ij þ b2jX2ij þ b3jX3ij þ eij (1)

where

b0j ¼ b00 þ b01W1j þ u0j (2)

b1j ¼ b10 þ b11W1j þ u1j (3)

b2j ¼ b20 þ b21W1j þ u2j (4)

b3j ¼ b30 þ b31W1j þ u3j (5)

where eij denotes the residual terms at level 1
(eij�Nð0,r2

eÞ), W1j denotes the predictor at level 2 (e.g.,
treated/controlled groups in the cRCT), and X1ij�X3ij

denote the level 1 predictors (e.g., pre-test scores, gender,
and other demographic variables, etc.). u0j is the residual
term of the random intercept (b0j), and u1j�u3j are the
residual terms of the random slopes (b1j�b3j), respectively.
These residual terms are jointly multivariate normal distrib-
uted (uj�MVNð0,HÞ, where H refers to the corresponding
covariance matrix).

2.2. Traditional Frequentist Estimation

Traditionally, multilevel models are estimated with frequent-
ist approaches (e.g., maximum likelihood (ML); Depaoli &
Clifton, 2015). However, ML relies on large samples to hold
asymptotic properties and obtain accurate parameter esti-
mates (Asparouhov & Muth�en, 2010; McNeish, 2016a).
When the sample sizes at both the within- and between-
levels are small, ML estimation is prone to convergence

problems (Depaoli & Clifton, 2015; Hox et al., 2010; Hox &
Maas, 2001; McNeish, 2016a; Schoeneberger, 2016), and
may produce unreliable and unstable parameter estimates
(Asparouhov & Muth�en, 2010; Hox & Maas, 2001;
McNeish, 2016a; McNeish & Stapleton, 2016).

In addition, multilevel models with categorical outcomes,
which are common in psychological research, may bring
additional challenges for traditional frequentist methods
(Holtmann et al., 2016). ML requires a large number of
dimensions in the process of multidimensional numerical
integration (Muth�en, 2010), which makes the estimation of
model computationally demanding. Therefore, in this situ-
ation, the weighted least squares estimator (WLS) is often
recommended instead (Muth�en et al., 2015). WLS utilizes
pairwise information (based on a polychoric correlation
matrix) and requires fewer integration points for each
dimension than ML (Asparouhov & Muth�en, 2012a;
Muth�en et al., 2015), thus is efficient for categorical out-
comes. Similar to WLS, weighted least squares estimator
with mean and variance adjusted (WLSMV) produces accur-
ate parameter estimate and fewer convergence problems in
small sample sizes, and it is often recommended in multi-
level models with categorical variables (Depaoli & Clifton,
2015; Hox et al., 2010). However, WLSMV may lead to
poor model fitting and biased standard error estimation
when the sample size is small (Muth�en et al., 2015), and is
limited to random intercept model (Asparouhov & Muth�en,
2012b; van Erp & Browne, 2021).

2.3. Bayesian Estimation

Considering the limitations of the traditional frequentist
approach in multilevel models with small sample sizes,
researchers often recommend Bayesian approach as alterna-
tive (Depaoli & Schoot, 2017; Kadane, 2015; Van de Schoot
et al., 2014). Bayesian estimation does not rely on asymp-
totic properties, making it attractive under the condition of
small samples. In Bayesian approach, the unknown parame-
ters are considered as random (rather than fixed) variables
drawn from the corresponding posterior distributions (van
de Schoot et al., 2021), which are jointly determined by the
prior and likelihood distributions (Lynch, 2007). Based on
the sampling algorithms (for example, Gibbs sampler and
Markov chain Monte Carlo (MCMC) algorithms), Bayesian
estimation can perform well in multilevel models, even with
small sample sizes (McNeish, 2016a). It can obtain accurate
parameter estimates with fewer clusters than the ML estima-
tor (Hox et al., 2012).

Bayesian estimation is also advantageous in complex
models (e.g., multilevel models with categorical variables). It
does not conduct complex calculations for standard errors,
which essentially eliminates convergence problems (Depaoli
& Clifton, 2015; Levy & Choi, 2013). Thus, Bayesian estima-
tion often outperforms traditional methods in model con-
vergence and parameter estimation in multilevel models
with small sample sizes (Asparouhov & Muth�en, 2010; Hox
et al., 2012). In addition, Bayesian approaches (e.g.,
MCMC; Gelfand & Smith, 1990; Gilks et al., 1996) do not

Figure 1. The path diagram of the multilevel model. Note: W1j : the predictor
at level 2; X1ij�X3ij : the predictors at level 1; Yij: the outcome variable at level
1. eij: the residual terms at level 1; u0j : the residual term of the random inter-
cept (b0j); u1j�u3j : residual terms of the random slopes (b1j�b3j).
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require multidimensional numerical integration, which
vastly improves their efficiency of model estimation. For
traditional methods, some of the complex models are chal-
lenging to estimate, such as multilevel models with categor-
ical variables (Depaoli & Clifton, 2015), the two-level
nonlinear structural equation model (Song & Lee, 2004),
and the multilevel structural equation model (MSEM) with
categorical variables and random slopes (Asparouhov &
Muth�en, 2013).

2.3.1. Prior Distributions in Bayesian Estimation
Another advantage of the Bayesian method is that it can
incorporate prior knowledge and evidence into model ana-
lysis. With appropriate informative priors, Bayesian methods
generally outperform the traditional ML estimator (Depaoli
& Clifton, 2015; McNeish, 2016a).

However, the procedure of the prior specification is
somewhat subjective and may essentially change the estima-
tion of the parameters. Generally speaking, priors with
smaller prior variance have more significant impacts on the
parameter estimation, especially when the sample sizes at
both the within- and between-levels are small, or the
dependent variables are categorical (Depaoli & Clifton,
2015; McNeish, 2016a). The specification of priors may sig-
nificantly influence the posterior distribution of parameters
(especially in small sample sizes; Lynch, 2007). Therefore,
researchers should always be cautious about the specification
of priors, especially in small samples (Holtmann et al., 2016;
McNeish, 2016a).

2.3.2. Inaccurate Informative Priors in Bayesian
Estimation
Inaccurate informative priors refer to priors in which the
prior means deviate from the corresponding true values
(Depaoli, 2014; Finch & Miller, 2019). It is usually challeng-
ing to correctly set the prior means in empirical studies
because of the lack of previous knowledge and theoretical
evidence. Thus, empirical researchers are prone to specifying
inaccurate informative priors in practice. However, like
McNeish (2016a), many researchers assumed that the prior
means were all correctly specified when conducting simula-
tions and ignored the possibility of inaccurate prior
information.

Recently, more and more researchers have started to
explore the potential influence of inaccurate prior informa-
tion in different models, such as the latent growth model
(Depaoli, 2014; Shi & Tong, 2017), the multiple indicators
and multiple causes model (MIMIC; Finch & Miller, 2019),
and the MSEM (Holtmann et al., 2016). Strongly inform-
ative priors with inaccurate prior information would lead to
devastating parameter estimation, but weakly informative
priors with inaccurate prior information may outperform
the diffused priors in some situations (Depaoli, 2014;
Holtmann et al., 2016). However, there are some limitations
in the simulations of Holtmann et al. (2016), as they: (a)
only investigated the measurement models and did not con-
sider the structural model; (b) only investigated the impacts

of inaccurate informative priors for categorical situations;
(c) assumed the sample size to be large (50–200) at the
between-level. However, in many empirical studies with
clustered data structures (such as cRCT), the sample size at
the between-level is generally less than 50 (e.g., Ha et al.,
2017; Newton et al., 2018; Shen et al., 2019).

2.4. The Impacts of the Intraclass Correlation Coefficient

In multilevel modeling research, the impact of the intraclass
correlation coefficient (ICC) is often of great interest
(Depaoli & Clifton, 2015). The ICC refers to the proportion
of total variation explained at the between-level
(ICC ¼ r2

B=ðr2
B þ r2

WÞ), where r2
B and r2

W refer to the vari-
ance of the outcome at the between- and within-levels,
respectively). A larger ICC indicates a more significant
between-level variation compared to the within-level vari-
ation. Many previous studies have shown that when the
level of ICC is small, traditional frequentist approach may
lead to convergence problems and biased parameter estima-
tion (Hox & Maas, 2001; Koch et al., 2015; Preacher &
Kristopher, 2011). In these situations, Bayesian approach
may overcome the problems of small ICC and accurately
estimate the parameters (Hox et al., 2012; Koch et al., 2015).

However, in Bayesian approach, the impact of the ICC
on parameter estimation with incorrect informative priors is
still unclear. Many researchers have suggested that a smaller
ICC may lead to worse performance (Can et al., 2015; Hox
& Maas, 2001; Preacher & Kristopher, 2011), while others
have provided contradictory results. For example, when ICC
is large, the non-informative Bayesian estimator may pro-
vide seriously biased parameter estimation at the between-
level in the MSEM (Depaoli & Clifton, 2015), suggesting
that Bayesian estimation may be more sensitive to the speci-
fication of priors when the ICC is large. In addition, under
the framework of multilevel MIMIC, bias toward the assess-
ment of between-level parameters increased as the level of
the ICC increased, and the power of the parameters
decreased at the same time (Cao et al., 2019; Finch &
French, 2011). Therefore, more research is needed to further
explore the influence of ICC on Bayesian estimation in
multilevel models (Fang et al., 2019), especially with differ-
ent prior specifications.

2.5. Goals of the Present Research

To explore the impacts of incorrect informative priors on
Bayesian estimation, the present study conducted a series of
simulations based on multilevel models and cRCT. For
Bayesian estimation with incorrect informative priors, we
focused on the impacts of prior variance and prior mean
deviation (from the population values). In addition, trad-
itional methods (ML2 for continuous data and WLSMV for
binary data) were also considered for comparison. To cover
as many situations in empirical studies as possible, different

2The MLR (robust maximum likelihood estimator) estimator was utilized as
default.
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data types, sample sizes, and different levels of ICCs were
considered in the simulation studies. The goals of the pre-
sent research were to investigate: (a) the impact of incorrect
informative priors on Bayesian estimation in multilevel
modeling; (b) whether and how these impacts vary with the
characteristics of the datasets (i.e., the data types, sample
sizes, and the levels of the ICC); (c) the situations in which
Bayesian estimation with incorrect informative priors per-
forms even better than traditional methods (if any). We
hope that the present research might strengthen the theoret-
ical and practical understanding of prior specifications in
the multilevel modeling framework, especially in cRCT
research, and provide guidelines for the specification of pri-
ors in empirical research.

3. Simulation Studies

Monte Carlo simulations were conducted for multilevel
models to evaluate the performance of different estimators
under different settings. The present study used R (R Core
Team, 2017) to generate data and Mplus 8.4 (Muth�en &
Muth�en, 1998–2017) to analyze the data.

3.1. Simulation Design

To maximize the generality of the research, we generated
data from the multilevel model introduced in the previous
section (Figure 1). Following McNeish (2016a), we gener-
ated X1ij from a standard normal distribution (X1ij�Nð0, 1Þ)
and generated W1j, X2ij, and X3ij as binary variables (with
the proportion of 0 equaling 0.5, 0.5, and 0.75, respectively).
The first diagonal element of H, r2

u0, changed with the ICC
level. The other diagonals of H (i.e., r2

u1�r2
u3, the residual

variances of random slopes) were set to 0.5, and the off-
diagonals were set to 0. The population values of the inter-
cepts of the random effects (b00�b30) were 0, 2.3, �0.25,
and �0.75, and the effects of the treatment (b01�b31) were
1.5, 0.12, �0.05, and �0.75, respectively. In cRCT research,
the treatment effects are usually of interest, so the present
research focused on the estimation of b01�b31:

To investigate the influence of different priors on
Bayesian estimators in various settings, data were generated
with different types of dependent variables, different sample
sizes at both levels, and different levels of ICCs. In addition,
we analyzed the models with different estimators to com-
pare the results of Bayesian approach with those of fre-
quentist approach.

3.1.1. Types of Dependent Variables
Researchers often assume the data to be normally distrib-
uted in theoretical research, but this assumption is often too
ideal to be satisfied in empirical studies (Fleishman, 1978).
In general, compared to non-normal factor means, non-nor-
mal residuals may lead to more seriously biased parameter
estimations (Song et al., 2010). In the current research, to
investigate the impacts of priors on Bayesian estimators
when normality is violated, we adopted the method

proposed by Fleishman (1978) to generate non-normally
distributed residuals for dependent variables. The distribu-
tions may be positively or negatively skewed.

Categorical (primarily binary) outcomes are common in
cRCT research but may bring challenges to model estima-
tion (Holtmann et al., 2016; Legare et al., 2015). Thus, in
addition to continuous data (normally distributed for Study
1 and non-normally distributed for Study 2), the present
research also considered conditions with binary outcomes
(Study 3).

3.1.2. Estimators
To compare the performance of different estimators, we
estimated the models with both frequentist methods (MLR
for continuous data and WLSMV for binary data) and
Bayesian methods. We also evaluated the impacts of differ-
ent prior settings (including non-informative and inform-
ative priors) on the Bayesian analysis (see the example
Mplus codes for Bayesian multilevel modeling in Appendix
A). Since the treatment effects are usually of research inter-
est, the present research only specified different informative
priors for the regression parameters (b10�b30 and b01�b31)
by adjusting the prior variances and prior means.
Specifically, there are three levels of informative strengths:
weakly informative priors, moderately informative priors,
and strongly informative priors (with prior variances equal-
ing 50%, 20%, and 10% of the corresponding true values of
the parameters, respectively). The prior means may equal to
(i.e., accurate informative priors), or deviate from the corre-
sponding true values at different levels (61SD or 63SD)
based on the prior variance terms (i.e., inaccurate inform-
ative priors; Depaoli, 2014). Figure 2 shows the informative
priors for b10 as an example. The priors for the other
parameters (e.g., residual variance) were set as the default.
Thus, the number of different Bayesian estimators was 1þ
5� 3 ¼ 16, and the number of overall different estimators
(including MLR or WLSMV) was 17 in total.

As mentioned before, WLSMV is relatively efficient in
analyzing categorical data. However, to date, multilevel
models with random slopes cannot be estimated with
WLSMV in Mplus 8.4 (Barendse & Rosseel, 2020).
Therefore, we conducted Study 3.1 and Study 3.2 separately
for binary situation. In Study 3.1, we considered random
slopes in the multilvel model like Study 1 and Study 2, and
the MLR instead of WLSMV estimator was considered. To
evaluate the performance of WLSMV in binary conditions,
we additionally conducted Study 3.2, in which the simulated
model only considered random intercepts (see Equation 6).

Yij ¼ b0j þ b10X1ij þ b20X2ij þ b30X3ij þ eij (6)

3.1.3. Sample Sizes
Before deciding the sample sizes in the simulations, we
explored typical sample sizes in cRCT research. We searched
Web of Science using the keywords “cluster randomized
controlled trials” and “multilevel” for relevant literature
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published between 2015 and 2019. After screening the titles
and abstracts, we obtained 95 cRCT papers and further
coded their sample sizes at level 1 and level 2, if reported
(Figure 3). As the number of clusters should be larger
than the number of between parameters (Muth�en, 2006),
we set the sample sizes at level 2 as 20, 30, 40, and 50,
and the sample sizes at level 1 were 30, 60, and 150,
respectively.

3.1.4. ICC
As previously mentioned, ICC represents the proportion of
the total variation explained at level 2. When ICC �0.059, it
is necessary to conduct multilevel modeling to deal with
hierarchical structures (Cohen, 1988). Following previous
simulations (e.g., Depaoli & Clifton, 2015; Hox et al., 2010;
Preacher & Kristopher, 2011), we set three levels of the ICC
(0.05, 0.1, and 0.2) for the continuous data. For binary data

Figure 2. The example prior specifications for b01. Note: The population value of b01 is 1.5 in the current simulations.

Figure 3. The sample sizes of cRCT research from 2015 to 2019.
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(Study 3.1 and Study 3.2), the residual variances at within
level were fixed to 1 corresponding to the probit link func-
tion (Bauer & Sterba, 2011; Holtmann et al., 2016). To
ensure that the residual variance is non-negative, we only
considered two levels of ICCs (i.e., 0.1 and 0.2) in the bin-
ary conditions.

In summary, as shown in Table 1, the present research
included four separate simulations (Study 1, Study 2, Study
3.1, and Study 3.2). Study 1 generated continuous and nor-
mally distributed outcomes, while Study 2 generated con-
tinuous and non-normal (including positively and negatively
skewed) outcomes. Study 3.1 and Study 3.2 both generated
binary outcomes, but Study 3.2 did not consider random
slopes across the clusters like Study 1-Study 3.1. In addition,
there are different levels of ICCs, sample sizes, and estima-
tors in the simulations. Therefore, there were 3� 4� 3�
17 ¼ 612 cases in Study 1, 2� 3� 4� 3� 17 ¼ 1224 cases
in Study 2, and 2� 4� 3� 17 ¼ 408 cases in Studies 3.1
and 3.2, respectively. Following previous research (Gates
et al., 2017; Hsu et al., 2017; Jung et al., 2020; Li &
Jacobucci, 2021), for each condition, 100 replications were
performed in the current research.

3.2. Evaluation Criteria

In all the simulations, we assessed the convergence using
the potential scale reduction (PSR), with the default criter-
ion in Mplus (PSR <1.05). To evaluate the impacts of dif-
ferent factors on the estimators (e.g., ML, non-informative
Bayesian estimation, and informative Bayesian estimation),
we conducted ANOVAs for each study after excluding the
non-converged replications. Then, the performance of par-
ameter estimation was analyzed more specifically with dif-
ferent evaluation criteria, including the absolute relative bias
(ARB) of parameter estimation, the ratio of standard error
(SE) and SD (SE/SD), mean square error (MSE), 95% confi-
dence interval coverage (95% CI coverage), and power.

3.2.1. ARB
ARB represents the absolute deviation of the parameter esti-
mation from the population values, which is computed as
follows:

ARB ¼ ĥ�h
h

�����

�����
� 100% (7)

where ĥ denotes the average parameter estimation of the
converged replications, and h denotes the corresponding
true value of the parameter. ARB of less than 10% was con-
sidered acceptable (Flora & Curran, 2004).

3.2.2. SE/SD
SE/SD was calculated as the ratio of SE to SD for the con-
verged replications. Asymptotically, the SE estimation (in
other words, posterior SD) should be close to the empirical
SDs, and the ratio between SE and SD should be approxi-
mately 1.0. In line with Cham et al. (2012), SE/SD between
0.9 and 1.1 was considered acceptable.

3.2.3. MSE
The MSE was computed as follows:

MSE ¼
P

ĥi � h
� �2

N
(8)

where N denotes the number of converged replications, ĥi
denotes the parameter estimation of the ith converged sam-
ple. The smaller the MSE an estimator obtains, the more
accurate the parameter estimation.

3.2.4. 95% CI Coverage
95% CI coverage refers to the percentage of converged repli-
cations in which the 95% confidence or credible interval
(CI) contains the population value of the parameter. In gen-
eral, 95% CI coverage should be close to 0.95.

3.2.5. Power
Power refers to the ability to successfully rejected the null
hypothesis (H0). A powerful estimator is sensitive to detect
truly existing effects. A higher power is typically more
desirable.

3.3. Results of the Simulations

Before analyzing the simulation results, the Monte Carlo SE
was calculated to quantify the uncertainty of the simulations
(Morris et al., 2019, see in the Supplemental online mater-
ial). The summarized Monte Carlo SE results for all the
parameters across the conditions indicated that 100 replica-
tions per condition generally lead to a low Monte Carlo SE.

In Study 1, Study 2, and Study 3.2, all estimators con-
verge successfully in all replications. However, in Study 3.1
(where the dependent variable is binary and there exist ran-
dom slopes), the convergence rates of MLR decline to 0.62-
1, while Bayesian estimation successfully converge in all the
replications.

We only specify different priors for the regression coeffi-
cients (which are also of main interest), so only the per-
formance of these parameters would be analyzed and
compared in different situations. We checked the ANOVA

Table 1. The summary of simulation designs.

Study ID Random-slope model Dependent variables ICC NL2 NL1 Estimators

1 Yes Normal 0.05, 0.1, 0.2 20, 30, 40, 50 30, 60, 150 1(MLR)þ1(BD)þ5�3¼ 17
2 Yes Non-normal 0.05, 0.1, 0.2 20, 30, 40, 50 30, 60, 150 1(MLR)þ1(BD)þ5�3¼ 17
3.1 Yes Binary 0.1, 0.2 20, 30, 40, 50 30, 60, 150 1(MLR)þ1(BD)þ5�3¼ 17
3.2 No Binary 0.1, 0.2 20, 30, 40, 50 30, 60, 150 1(WLSMV)þ1(BD)þ5�3¼ 17

Note: MLR: robust maximum likelihood estimator; BD: Bayesian estimation with diffuse prior; WLSMV: weighted least squares estimator with mean and variance
adjusted.
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results for each study before analyzing the evaluation criteria
(i.e., ARB, SE/SD, MSE, 95% CI coverage, and power). The
ANOVA (e.g., Table 23) indicated that the levels of ICC, the
sample sizes at both level 1 and level 2, the prior variance,
and the magnitude of deviation of prior means may impact
parameter estimation differently. Additionally, the effects of
these factors may interact with each other at the same time.

In the cRCT, the treatment effects on the outcome vari-
able (b01) are usually of interest. Therefore, the results for
b01 are presented in more detail.

3.3.1. Study 1: Normally Distributed Outcomes
3.3.1.1. ARB. To show whether the estimators underesti-
mated or overestimated the parameters, we present relative
bias (RB) rather than ARB for b01 in Figure 4. MLR obtains
a similar ARB as the Bayesian estimation with non-inform-
ative priors. For Bayesian estimators with incorrect inform-
ative priors, the ARB of parameter estimation decreases
with both the prior variance and the magnitude of the prior
mean deviation decrease. A large sample size at level 2 buf-
fers the negative impacts of incorrect prior information. For
the treatment effect on the outcome variable (b01), the nega-
tive effects of incorrect prior information tended to increase

as the ICC increased. However, this trend was not evident
in the results of the other path coefficients.

3.3.1.2. SE/SD. Figure 5 presents the SE/SD results for b01
as an example. In general, Bayesian estimation with inform-
ative priors overestimates the SE/SD ratio. With an increase
in prior variance, the ratio of SE/SD decreased toward 1. An
increase in the sample size at level 2 can reduce the SE/SD
ratio in the informative Bayesian estimation. Moreover, the
ratio of SE/SD may be higher if the prior mean deviates
from the population value more severely.

3.3.1.3. MSE. The MSE results are presented for b01 in Figure
6. MLR and non-informative Bayesian estimators tend to
obtain large MSEs in the case of small samples. The Bayesian
estimation with the correct informative priors obtains the
lowest MSE. However, Bayesian methods with incorrect prior
information led to a much larger MSE. The increase in the
sample size at both levels decreased the MSE of the param-
eter estimation. Still, the impacts of the level 2 sample sizes
are more evident than those of the level 1 sample sizes. In
addition, a large prior variance decreases the negative
impacts of incorrect prior information in Bayesian methods.

3.3.1.4. Coverage. Figure 7 presents the 95% CI coverage of
parameter estimation for b01. The coverage of parameter esti-
mation increases significantly as the sample size at level 2

Table 2. Effect sizes (partial g2) of study 1.

ARB SE/SD MSE 95 Coverage Power

Effect MLR BD INF MLR BD INF MLR BD INF MLR BD INF MLR BD INF

ICC 0.004 0.005 0.006 0.016 0.022 0.030 0.014 0.013 0.481 0.002 0.001 0.067 0.000 0.007 0.009
NL2 0.092 0.093 0.620 0.028 0.152 0.948 0.160 0.159 0.515 0.004 0.002 0.256 0.124 0.284 0.253
NL1 0.036 0.037 0.182 0.007 0.010 0.761 0.064 0.064 0.073 0.001 0.002 0.031 0.065 0.085 0.078
ICC � NL2 0.001 0.001 0.001 0.015 0.019 0.143 0.002 0.002 0.087 0.002 0.001 0.002 0.006 0.010 0.010
ICC � NL1 0.001 0.001 0.003 0.009 0.011 0.178 0.001 0.001 0.003 0.002 0.001 0.000 0.001 0.002 0.002
NL2 � NL1 0.001 0.001 0.004 0.027 0.042 0.547 0.007 0.007 0.009 0.001 0.002 0.001 0.003 0.004 0.006
ICC � NL2 � NL1 0.002 0.002 0.003 0.031 0.030 0.133 0.002 0.002 0.003 0.002 0.004 0.004 0.004 0.004 0.004
Mag – – 0.925 – – 0.941 – – 0.664 – – 0.871 – – 0.568
Mag � ICC – – 0.001 – – 0.160 – – 0.255 – – 0.033 – – 0.078
Mag � NL2 – – 0.231 – – 0.849 – – 0.277 – – 0.179 – – 0.069
Mag � NL1 – – 0.036 – – 0.105 – – 0.016 – – 0.018 – – 0.029
Mag � ICC � NL2 – – 0.001 – – 0.413 – – 0.047 – – 0.003 – – 0.012
Mag � ICC � NL1 – – 0.002 – – 0.158 – – 0.002 – – 0.002 – – 0.002
Mag � NL2 � NL1 – – 0.004 – – 0.182 – – 0.009 – – 0.003 – – 0.004
Mag � ICC � NL2 � NL1 – – 0.002 – – 0.389 – – 0.005 – – 0.005 – – 0.004
Strength – – 0.957 – – 0.999 – – 0.531 – – 0.678 – – 0.646
Strength � ICC – – 0.004 – – 0.014 – – 0.153 – – 0.020 – – 0.004
Strength � NL2 – – 0.383 – – 0.972 – – 0.183 – – 0.034 – – 0.064
Strength � NL1 – – 0.061 – – 0.897 – – 0.014 – – 0.006 – – 0.030
Strength � ICC � NL2 – – 0.003 – – 0.297 – – 0.145 – – 0.004 – – 0.008
Strength � ICC � NL1 – – 0.001 – – 0.296 – – 0.001 – – 0.001 – – 0.001
Strength � NL2 � NL1 – – 0.003 – – 0.486 – – 0.001 – – 0.002 – – 0.003
Strength � ICC � NL2 � NL1 – – 0.003 – – 0.248 – – 0.002 – – 0.003 – – 0.006
Mag � strength – – 0.346 – – 0.915 – – 0.014 – – 0.497 – – 0.123
Mag � strength � ICC – – 0.001 – – 0.159 – – 0.068 – – 0.009 – – 0.007
Mag � strength � NL2 – – 0.090 – – 0.776 – – 0.056 – – 0.010 – – 0.043
Mag � strength � NL1 – – 0.007 – – 0.116 – – 0.002 – – 0.003 – – 0.004
Mag � strength � ICC � NL2 – – 0.001 – – 0.333 – – 0.122 – – 0.004 – – 0.011
Mag � strength � ICC � NL1 – – 0.001 – – 0.288 – – 0.001 – – 0.001 – – 0.001
Mag � strength � NL2 � NL1 – – 0.003 – – 0.135 – – 0.003 – – 0.002 – – 0.004
Mag � strength � ICC � NL2 � NL1 – – 0.002 – – 0.380 – – 0.004 – – 0.003 – – 0.003

Note: MLR: robust maximum likelihood estimator; BD: Bayesian estimator with default priors; INF: Bayesian estimator with informative priors. ICC: intraclass coeffi-
cient; NL1: sample size at level 1; NL2: sample size at level 2; mag: the magnitude of prior mean deviation; strength: the strength of prior information. Bold
effect sizes are larger than 0.06.

3Due to limited space, only the results of study 1 are presented. The ANOVA
results of study 2 – study 3.2 are available in the Supplemental online
material.
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Figure 5. The ratio of SE and SD for b01 in study 1. Note: MLR: robust maximum likelihood estimator; BD: Bayesian estimator with default priors. L3: Bayesian esti-
mator with the prior means deviating 3SD from the true value to the left; L1: Bayesian estimator with the prior means deviating 1SD from the true value to the
left; C: Bayesian estimator with the prior means equaling the true value; R1: Bayesian estimator with the prior means deviating 1SD from the true value to the right;
R3: Bayesian estimator with the prior means deviating 3SD from the true value to the right. W: weakly informative priors (prior variance¼ population value�50%);
M: mediumly informative priors (prior variance¼ population value�20%); S: strongly informative priors (prior variance¼ population value�10%). Dot dashed lines:
SE/SD ¼ 0.9 or SE/SD ¼ 1.1.

Figure 4. Relative bias (RB) for b01 in study 1. Note: MLR: robust maximum likelihood estimator; BD: Bayesian estimator with default priors. L3: Bayesian estimator
with the prior means deviating 3SD from the true value to the left; L1: Bayesian estimator with the prior means deviating 1SD from the true value to the left; C:
Bayesian estimator with the prior means equaling the true value; R1: Bayesian estimator with the prior means deviating 1SD from the true value to the right; R3:
Bayesian estimator with the prior means deviating 3SD from the true value to the right. W: weakly informative priors (prior variance¼ population value�50%); M:
mediumly informative priors (prior variance¼ population value�20%); S: strongly informative priors (prior variance¼ population value�10%). Dotted lines: RB¼ 0;
dot dashed lines: RB ¼ 60:1:
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Figure 6. The MSE for b01 in study 1. Note: MLR: robust maximum likelihood estimator; BD: Bayesian estimator with default priors. L3: Bayesian estimator with the
prior means deviating 3SD from the true value to the left; L1: Bayesian estimator with the prior means deviating 1SD from the true value to the left; C: Bayesian
estimator with the prior means equaling the true value; R1: Bayesian estimator with the prior means deviating 1SD from the true value to the right; R3: Bayesian
estimator with the prior means deviating 3SD from the true value to the right. W: weakly informative priors (prior variance¼ population value�50%); M: mediumly
informative priors (prior variance¼ population value�20%); S: strongly informative priors (prior variance¼ population value�10%).

Figure 7. The 95% CI coverage for b01 in study 1. Note: MLR: robust maximum likelihood estimator; BD: Bayesian estimator with default priors. L3: Bayesian estima-
tor with the prior means deviating 3SD from the true value to the left; L1: Bayesian estimator with the prior means deviating 1SD from the true value to the left; C:
Bayesian estimator with the prior means equaling the true value; R1: Bayesian estimator with the prior means deviating 1SD from the true value to the right; R3:
Bayesian estimator with the prior means deviating 3SD from the true value to the right. W: weakly informative priors (prior variance¼ population value�50%); M:
mediumly informative priors (prior variance¼ population value�20%); S: strongly informative priors (prior variance¼ population value�10%). Dotted lines: 95% CI
coverage = 0.9; dot dashed lines: 95% CI coverage = 0.95.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 9



increases, but only increases slightly as the sample size at
level 1 increases. For Bayesian analysis with a slightly devi-
ated informative prior (magnitude of deviation ¼ 1 SD), the
95% CI coverage of the parameter estimation was acceptable
(>90%). However, if the prior mean deviates by 3 SD from
the population value of the parameter, the 95% CI coverage
rate declines considerably. Large sample sizes at level 2 and
large ICC tend to buffer the negative impacts of incorrect
prior information.

3.3.1.5. Power. The power results for b01 are presented as
an example in Figure 8. When the sample sizes are small
and the ICC is large, MLR and Bayesian estimation with
non-informative priors obtain low power. For the Bayesian
estimation with correct prior information, the power of the
parameter estimation is acceptable (>0.8), even in the case
of small samples. If the prior tends to underestimate the
magnitude of effects (that is, the absolute values of the
parameters), the corresponding power of the parameter esti-
mation is lower than that of the correct priors. If the prior
overestimates the magnitude of effects, the Bayesian estima-
tor will obtain a higher power. However, in this situation,
the high power of parameter estimation may increase Type
I error rates. With the increase in the sample size at level 2
and the decrease in the ICC, the negative impacts of incor-
rect prior information on power decrease accordingly.

3.3.1.6. Conclusions. In general, Bayesian estimation with
correct informative priors performs best, especially in terms

of the ARB of parameter estimation. The performance of
Bayesian estimation with non-informative priors and MLR
is similar in parameter estimation. Both MLR and Bayesian
estimation with non-informative priors perform poorly in
terms of MSE and power, especially in small samples and
large ICCs. For Bayesian analysis with incorrect informative
priors, a large ICC and a small sample size at level 2 may
increase the negative impacts of incorrect prior information.
Stronger informative priors also lead to a more negative
influence of incorrect prior information.

3.3.2. Study 2: Non-Normally Distributed Outcomes
To further explore the impacts of incorrect informative pri-
ors in the situation of non-normally distributed outcomes,
we generated non-normally distributed dependent variables
in Study 2. We compared the results of negatively and posi-
tively skewed data and found that the impact of the direc-
tion of skewness was negligible. In addition, the impacts of
the ICC, sample sizes at both levels, the prior variance, and
the magnitude of deviation of prior means in Study 2 are
roughly consistent with those in Study 1. Therefore, to save
space, we plotted the results of study 2 in the Supplemental
online material.

3.3.2.1. ARB. In study 2, MLR and Bayesian estimators with
non-informative priors obtain relatively robust ARBs,
regardless of the non-normality of the dependent variables.
However, in Bayesian estimators with incorrect informative

Figure 8. The power for b01 in study 1. Note: MLR: robust maximum likelihood estimator; BD: Bayesian estimator with default priors. L3: Bayesian estimator with
the prior means deviating 3SD from the true value to the left; L1: Bayesian estimator with the prior means deviating 1SD from the true value to the left; C:
Bayesian estimator with the prior means equaling the true value; R1: Bayesian estimator with the prior means deviating 1SD from the true value to the right; R3:
Bayesian estimator with the prior means deviating 3SD from the true value to the right. W: weakly informative priors (prior variance¼ population value�50%); M:
mediumly informative priors (prior variance¼ population value�20%); S: strongly informative priors (prior variance¼ population value�10%).

10 ZHENG, ZHANG, JIANG, PAN

https://doi.org/10.1080/10705511.2022.2136185
https://doi.org/10.1080/10705511.2022.2136185


priors, non-normality tends to increase the ARB for param-
eter estimation when the level of the ICC is high.

3.3.2.2. SE/SD. In general, the ratio of SE/SD is larger in
non-normally distributed data (Study 2) than in normally
distributed data (Study 1). The non-normality of the data
significantly increases the ratio of SE/SD for Bayesian esti-
mators with (both correctly and incorrectly) informative pri-
ors. In non-normally distributed data, SE/SD mainly
depends on the strength of the prior information.

3.3.2.3. MSE. As for the results of MSE, MLR and non-
informative Bayesian estimators behave worse for non-nor-
mal data than normal ones. For informative Bayesian, non-
normality dramatically increases the negative impacts of
incorrect prior information. In addition, non-normality
tends to increase the adverse effects of ICC for b01.
However, the effects of ICC are not consistent with other
coefficients.

3.3.2.4. Coverage. As for the 95% CI coverage of parameter
estimation for b01, MLR and non-informative Bayesian esti-
mators were hardly affected by the normality of the data.
For informative Bayesian estimators, the impact of non-nor-
mality differs among different levels of the ICC. If the ICC
is high, non-normality tends to decrease the coverage of
parameters. However, if the ICC is low (0.05 or 0.1), the
non-normality slightly increases the coverage of parameters.

3.3.2.5. Power. Similarly, the impacts of non-normality dif-
fer among the different levels of the ICC for MLR and
Bayesian estimators. Non-normality leads to low power
when the level of ICC is high, but this is reversed when the
level of the ICC is low. When the ICC is low, the non-nor-
mal data obtain slightly higher power than the normal data,
especially when the sample size at level 2 is small.

3.3.2.6. Conclusions. Study 2 generated data from negatively
and positively skewed distributions separately. Generally,
MLR and Bayesian estimators perform worse in Study 2
(non-normal situations) than in Study 1 (normal-data con-
ditions). The results indicate that the difference between the
specific patterns of skewness (negatively or positively
skewed) is negligible. The increase in the sample size at level
2 and prior variance decreases the negative impacts of
incorrect prior information. In addition, non-normality
tends to increase the adverse effects of incorrect prior infor-
mation regarding parameter estimation bias.

3.3.3. Study 3.1: Binary Outcomes with Random Slopes
Both Study 3.1 and Study 3.2 analyzed binary dependent
variables. In Study 3.1, we conducted multilevel modeling
with random slopes, while in Study 3.2, we considered
multilevel models only with random intercepts. In Study
3.1, all the models converged successfully with Bayesian esti-
mation, while the convergence rate of MLR ranges between

0.62 and 1. To save space, the results of study 3.1 and study
3.2 are shown in the Supplemental online material.

3.3.3.1. ARB. Generally, models with binary dependent vari-
ables obtain larger ARBs than those with continuous and
normally distributed variables (Study 1). MLR performs
similarly to the non-informative Bayesian estimator, yielding
a small parameter estimation bias. The ARB of all estimators
decreases as the sample size at level 2 increases. A large
sample size at level 2 buffers the negative impacts of incor-
rect prior information. In addition, a large prior variance
weakens the strength of priors and the adverse effects of
incorrect prior information.

3.3.3.2. SE/SD. The results of the SE/SD ratio for b01 indi-
cated that MLR is unstable in binary variables and may
obtain a large SE/SD. For Bayesian estimators, informative
priors generally obtain larger ratios of SE/SD than non-
informative priors. A smaller prior variance leads to larger
ratios of SE/SD, and incorrect prior information tends to
increase the SE/SD. This trend decreases as the sample size
at level 2 increases.

3.3.3.3. MSE. With the increase in the sample size at level 2,
the negative impacts of incorrect prior information on the
MSE decrease accordingly. The decrease in ICC also tends
to buffer the adverse effects of incorrect informative priors.

3.3.3.4. Coverage. As the results of 95% CI coverage for b01
show, the coverage of the parameter estimation increases as
the sample size at level 2 increases. However, the coverage
of MLR tends to decrease with an increase in the sample
size at level 1. For Bayesian estimators, large sample sizes at
level 2 buffer the negative impacts of incorrect prior infor-
mation on coverage. In addition, a large prior variance
tends to reduce the effects of incorrect informative priors.

3.3.3.5. Power. Generally, the power of MLR and Bayesian
estimation with non-informative priors is relatively low,
especially for small samples. The increase in sample sizes at
both levels 1 and 2 increases the power of the parameters
efficiently. The rise of ICC tends to decrease the power of
parameter estimation.

3.3.3.6. Conclusions. Similar to the patterns of the continu-
ous data settings, as the ICC decreases and the sample sizes
increase, the impacts of incorrect informative priors
decrease accordingly. However, compared to Study 1, the
performance of parameter estimation is more sensitive to
the specifications of the priors. In addition, the buffering
effects of the sample size at level 2 are more evident.

In Study 3.1, the MLR estimator requires a large amount
of multidimensional integration, thus leading to problems in
terms of convergence. In the replications that MLR con-
verges successfully, the parameter estimation and the ratio
of SE/SD may be seriously biased. The power of the param-
eters was low in the small sample cases. In contrast,
Bayesian estimators can successfully reach to convergence
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and perform well in terms of parameter estimation even in
small samples.

3.3.4. Study 3.2: Binary Outcomes without Random Slopes
To compare the performance of Bayesian estimators to the
WLSMV (which is more commonly used in binary data),
we additionally conducted Study 3.2 based on Study 3.1. In
Study 3.2, we simplified the models and omitted random
slopes in the models. Thus, the only treatment effect (b01)
was the main focus of the research.

3.3.4.1. ARB. The model in Study 3.2 is simpler than that of
Study 3.1 and results in a lower estimation bias in general.
Similar to Study 3.1, the estimation of parameters is sensi-
tive to the specifications of priors. In addition, the impacts
of priors on Bayesian analysis show a similar pattern to that
of Study 3.1. The ARB of the WLSMV was relatively small
across the conditions, even in small samples. However,
Bayesian estimation with non-informative priors may lead
to more severe ARB than those with slightly incorrect prior
information in small samples.

3.3.4.2. SE/SD. Likewise, informative Bayesian estimators
yield higher ratios of SE and SD than Bayesian estimation
with non-informative priors and WLSMV in general. The
decreasing of the prior variance and the increasing of the
prior mean deviation lead to increased ratios of SE and SD,
especially when the level of ICC is high. When the level-2
sample size and ICC are small, the WLSMV obtains a large
ratio of SE and SD, which may even surpass those of
informative Bayesian estimators.

3.3.4.3. MSE. Across all estimators, a large sample size at
level 2 decreases the MSE more significantly than the sam-
ple size at level 1. Bayesian estimation with non-informative
priors is highly sensitive to the sample sizes and obtains an
overly large MSE when the sample sizes at both levels are
small. Likewise, seriously incorrect prior information signifi-
cantly increases the MSE of parameter estimation. The MSE
of the WLSMV was slightly smaller than that of the non-
informative Bayesian. However, when the sample size at
level 2 is small, the WLSMV obtains an even larger MSE
than the Bayesian estimator with slightly incorrect inform-
ative priors.

3.3.4.4. Coverage. Apart from the Bayesian estimator with
seriously incorrect prior information, all other estimators
perform well across different situations (regarding 95% CI
coverage). When the ICC was low, 95% CI coverage was
generally acceptable. However, a large ICC increases the
impact of incorrect prior information, especially when the
sample sizes and prior variance are small.

3.3.4.5. Power. In Study 3.2, the power of different estima-
tors (including Bayesian estimation with serious incorrect
prior information) is generally high when the sample size at
level 2 is large. However, when the sample size at level 2 is

small, the power of the Bayesian estimation is significantly
influenced by the corresponding prior information. In add-
ition, WLSMV obtains low power in small samples.
Bayesian estimation with non-informative priors obtains
higher power than that of the WLSMV and performs simi-
larly to Bayesian estimation with weak prior information.

3.3.4.6. Conclusions. In summary, when the level-2 sample
size and ICC are small, the WLSMV obtains large ratios of
SE and SD, large MSE, and low power. Bayesian estimators
with relatively strong informative priors generally perform
well. However, specifying non-informative priors may lead
to seriously biased parameter estimations in small samples.
In addition, similar to the results of Study 3.1, the negative
impacts of incorrect informative priors are more significant
than those under the continuous data conditions.

4. Empirical Analysis: Democratic School Health
Education

4.1. Research Background

A publicly available dataset from a cRCT research4

(Boberova et al., 2017) were used to further illustrate the
conclusions of simulations. In the cRCT research, Boberova
et al. (2017) evaluated the effect of the democratic school
health education intervention, which is based on the investi-
gation-vision-action-change (IVAC) model. Participants
were 180 Slovakia fourth-grade pupils from 10 classes (52%
male and the average age was 10.29). To minimize the effect
of treatment contamination, the intervention was conducted
in class units. Researchers randomly selected 5 classes as
experimental groups and the remaining 5 classes were con-
trol groups. In the experimental classes, students were
instructed to attend the intervention program of democratic
school health education. In control classes, however, stu-
dents just took their normal courses as usual.

Specifically, the intervention program for the experimen-
tal classes included 4 phases. Firstly, students were
instructed to pay close attention to, think about, and
describe their health condition. For example, students
should continuously record their activities and correspond-
ing feelings for a week. Secondly, they were encouraged to
think about the impacts of the campus environment on
their physical and mental health, and have extensive discus-
sions on factors that can improve their well-being in cam-
pus. Next, based on the discussion, students were inspired
to develop specific plans for health improvement, and pre-
sent the plan directly to the principal of the campus.
Finally, students were guided to critically review their efforts
during the program. In both experimental and control
classes, all students were required to answer some question-
naires before (pre-measurement) and after the intervention
(post-measurement). Key outcome variables included per-
ception of school, subjective well-being, and violent behavior
in school.

4Retrieved from osf.io/m5cth.
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4.1.1. Data Analysis
Two multilevel analysis were conducted based on the empir-
ical data. In empirical example 1, post-measured well-being
was selected as the outcome, corresponding to simulation
study 1 (in which the outcome is normally distributed). In
empirical example 2, the post-measured violent behavior
was the outcome instead, corresponding to simulation study
2 (in which the outcome is non-normally distributed). In
empirical studies, it is generally more difficult to specify
appropriate prior information than in simulations. As previ-
ous research suggested (Brown, 2008; Holtmann et al., 2016;
van der Linden, 2008), due to the lack of prior knowledge,
we conducted ML estimation first and assumed that the par-
ameter estimation of the ML is true. Next, as the simula-
tions, we imposed priors with different mean and variance
hyperparameters based on the ML estimation (that is, data-
dependent priors, DDP). For the prior distribution
Nðl,r2Þ, the mean hyperparameter l would deviate -3SD,
-1SD, 0SD, þ1SD, or þ3SD from the corresponding esti-
mates of ML. r2, the variance hyperparameter, would be
10%, 20%, or 50% of the corresponding estimates of ML.

4.2. Results

4.2.1. Empirical Example 1: Normally Distributed
Outcomes
In the first empirical example, post-measured well-being
was the dependent variable. Age, gender, and pre-measured
well-being were independent variables at level 1, while the
intervention condition (experimental vs. control group) was
the independent variable at level 2 (class level). We deleted
missing data listwise and obtained 158 complete answers
based on the variables that we were interested in. The ICC
of the dependent variable (the post-measured well-being)
was 0.208, so multilevel modeling was generally suggested
(Cohen, 1988). Since the effect of the intervention was the
research focus, we grand-mean centered the independent
variables at level 1 according to previous suggestions
(Enders & Tofighi, 2007; McNeish, 2016a). Like the simula-
tion studies, we considered random slope effects in the
model to investigate the cross-level effects of the interven-
tion (Figure 9). As the skewness and kurtosis of the depend-
ent variable (post-measured well-being) were �0.482 and
1.571 respectively, and less than the rule-of-thumb cutoff
values (jskewnessj �2 and kurtosisj j � 7; Curran et al.,
1996) we assumed the pattern of results were similar to
those of the simulation study 1, in which the dependent
variable is normally distributed.

Table 3 presents the results of ML estimation. Compared
to pupils in control classes, pupils in experimental classes
develop a significantly higher level of well-being after the
intervention of democratic school health education
(b01 ¼ 3:342, p <.001). Based on the results of ML estima-
tion, we further conducted Bayesian estimation with infor-
mational priors. Specifically, we set the prior mean
hyperparameter based on the ML parameter estimation, and
the prior variance hyperparameter based on the standard
error of the ML estimation. Like the ML, the result of

Bayesian estimation (Table 4) indicates significant interven-
tion effects on the well-being (b01 ¼ 3:362, 95% CI ¼
[1.894, 4.782]). In addition, the invention significantly miti-
gates the sex difference in well-being (b21 ¼ 2:172, 95% CI
¼ [0.072, 4.184]). That is, boys may benefit more than girls
in the program, and the gap in well-being between boys and
girls may be smaller after the intervention of democratic
school health education.

To further explore the effect of priors on Bayesian esti-
mation, we imposed different priors on the regression
parameters (as the simulations), and the pattern of results
(Tables 5 and 6) is similar to that of the simulations. When
the prior mean hyperparameters seriously deviate from the
actual effects (i.e., the parameter estimation in the ML),

Figure 9. The path diagram of the empirical examples. Note: Intj: the demo-
cratic school health education intervention at level 2; Preij: the pre-measured
well-being (in empirical example 1) or violent behavior (in empirical example
2); Postij: the post-measured well-being (in empirical example 1) or violent
behavior (in empirical example 2). eij: the residual terms at level 1; u0j : the
residual term of the random intercept (b0j); u1j�u3j : residual terms of the ran-
dom slopes (b1j�b3j).

Table 3. Empirical example 1: the results of MLR analysis.

Para est SE est/SE p

b11 �1.409 2.539 �0.555 0.579
b21 1.977 1.503 1.315 0.189
b31 0.139 0.180 0.775 0.438
b01 3.342�� 0.947 3.528 <.001
b10 �0.621 0.800 �0.776 0.438
b20 �1.105 1.268 �0.872 0.383
b30 0.097 0.128 0.763 0.445

Note: est: the estimation of parameters; SE: the standard error; ��p<.001.

Table 4. Empirical example 1: the results of Bayesian analysis with DDP.

95% CI

Para est SD Lower 2.5% Upper 2.5%

b11 �1.570 1.673 �4.883 1.748
b21 2.172 1.025 0.072 4.184
b31 0.127 0.132 �0.125 0.392
b01 3.362 0.725 1.894 4.782
b10 �0.587 0.691 �1.886 0.812
b20 �1.023 0.801 �2.654 0.486
b30 0.090 0.091 �0.082 0.269

Note: DDP: data� dependent priors; est: the estimation of parameters; sd: the
standard deviation of the posterior distribution; 95% CI: the 95% credible
intervals of parameters.
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Bayesian estimators obtain seriously biased parameter esti-
mation and may fail to detect the effect of the intervention.
Bayesian estimators with slightly deviated priors, however,
obtain parameter estimation that is relatively close to the
actual effects.

4.2.2. Empirical Example 2: Non-Normally Distributed
Outcomes
In empirical example 2, we selected post-measured violent
behavior as the dependent variable. Likewise, age, gender,
and pre-measured violent behavior were selected as level-1
independent variables, and the intervention condition
(experimental vs. control group) was the level-2 independent

variable. After deleting the missing data listwise (based on
the dependent and independent variables), we obtained 157
complete samples in total. The ICC of the dependent vari-
able (the post-measured violent behavior) was.084, so we’d
better analyze the data with multilevel models (Cohen,
1988). Likewise, we grand-mean centered the independent
variables at level 1, and considered random slope effects in
the model. As the skewness and kurtosis of the dependent
variable are relatively large in empirical example 2 (skewness
¼ 2.045, kurtosis ¼ 4.130), we assumed the pattern of
results might be similar to that of the simulation study 2, in
which the dependent variable is non-normally distributed.

As Table 7 shows, the intervention significantly decreases
participants’ violent behavior after the program
(b01 ¼ �0:858, p ¼.036). Pupils with more (vs. less) pre-
measured violent behavior tend to report more post-meas-
ured violent behavior (b30 ¼ 0:599, p ¼.002), but the inter-
vention significantly mitigates this tendency (b31 ¼ �0:515,
p ¼.008). However, the gender differences of post-measured
violent behavior (boys appear more violent than girls, b20 ¼
1:238, p <.001) may not be mitigated by the intervention.

We further conducted Bayesian estimation with informa-
tional priors based on the ML results. As presented in Table
8, the informational Bayesian estimation appear more
powerful than the ML estimation. In addition to supporting
the significant effects in the ML estimation, the Bayesian
estimator further indicates that the intervention significantly

Table 5. Empirical example 1: the parameter estimation of different
estimators.

Esitmator b11 b21 b31 b01 b10 b20 b30

MLR �1.409 1.977 0.139 3.342 �0.621 �1.105 0.097
BD �2.100 2.411 0.108 3.270 �0.200 �1.110 0.085
L3W �3.494 0.293 �0.131 1.132 �1.952 �2.508 �0.067
L1W �2.033 1.735 0.073 2.810 �0.999 �1.416 0.060
CW �1.429 2.111 0.125 3.362 �0.594 �1.052 0.089
R1W �0.814 2.483 0.178 3.909 �0.187 �0.674 0.117
R3W 0.594 3.723 0.370 5.467 0.760 0.294 0.236
L3M �2.858 0.660 �0.125 1.582 �1.560 �2.166 �0.087
L1M �1.884 1.679 0.071 2.849 �0.915 �1.397 0.053
CM �1.422 2.064 0.129 3.365 �0.613 �1.074 0.091
R1M �0.965 2.438 0.190 3.877 �0.309 �0.740 0.126
R3M �0.001 3.369 0.394 5.086 0.328 �0.013 0.280
L3S �2.484 0.936 �0.088 1.934 �1.318 �1.930 �0.072
L1S �1.763 1.699 0.075 2.927 �0.847 �1.353 0.051
CS �1.417 2.030 0.134 3.364 �0.616 �1.086 0.091
R1S �1.068 2.364 0.191 3.797 �0.385 �0.816 0.132
R3S �0.365 3.083 0.365 4.737 0.084 �0.253 0.268

Note: BD: Bayesian estimator with default priors. L3: Bayesian estimator with
the prior means deviating 3SD from the true value to the left; L1: Bayesian
estimator with the prior means deviating 1SD from the true value to the left;
C: Bayesian estimator with the prior means equaling the true value; R1:
Bayesian estimator with the prior means deviating 1SD from the true value to
the right; R3: Bayesian estimator with the prior means deviating 3SD from the
true value to the right. W: weakly informative priors (prior varian-
ce¼ population value�50%); M: mediumly informative priors (prior varian-
ce¼ population value�20%); S: strongly informative priors (prior
variance¼ population value�10%).

Table 6. Empirical example 1: the 95% CIs of different estimators.

Esitmator b11 b21 b31 b01 b10 b20 b30

MLR [�6.387, 3.568] [�0.970, 4.923] [�0.213, 0.492] [1.485, 5.199] [�2.190, 0.948] [�3.590, 1.380] [�0.153, 0.348]
BD [�9.446, 4.423] [�1.415, 6.343] [�0.387, 0.656] [0.294, 5.979] [�4.785, 4.778] [�3.939, 1.494] [�0.257, 0.448]
L3W [�5.095, �1.856] [�1.738, 2.061] [�0.665, 0.254] [�1.181, 3.084] [�2.973, �0.927] [�4.009, �1.174] [�0.489, 0.223]
L1W [�3.595, �0.434] [0.028, 3.241] [�0.249, 0.402] [1.004, 4.452] [�1.972, �0.003] [�2.647, �0.253] [�0.174, 0.298]
CW [�2.944, 0.145] [0.457, 3.624] [�0.184, 0.467] [1.699, 5.013] [�1.540, 0.393] [�2.264, 0.100] [�0.134, 0.328]
R1W [�2.367, 0.730] [0.839, 4.081] [�0.135, 0.531] [2.185, 5.645] [�1.133, 0.829] [�1.870, 0.478] [�0.100, 0.360]
R3W [�0.990, 2.214] [1.968, 5.630] [0.014, 0.940] [3.478, 7.898] [�0.266, 1.822] [�1.027, 1.664] [�0.043, 0.699]
L3M [�3.864, �1.794] [�0.543, 1.795] [�0.463, 0.157] [0.096, 2.943] [�2.202, �0.889] [�3.086, �1.306] [�0.361, 0.145]
L1M [�2.900, �0.843] [0.521, 2.717] [�0.183, 0.325] [1.555, 4.139] [�1.557, �0.248] [�2.270, �0.581] [�0.132, 0.236]
CM [�2.443, �0.379] [0.920, 3.107] [�0.117, 0.382] [2.057, 4.658] [�1.240, 0.053] [�1.919, �0.257] [�0.089, 0.275]
R1M [�1.976, 0.067] [1.326, 3.513] [�0.056, 0.460] [2.571, 5.167] [�0.936, 0.353] [�1.572, 0.069] [�0.052, 0.323]
R3M [�1.023, 1.021] [2.246, 4.553] [0.103, 0.737] [3.669, 6.584] [�0.318, 1.014] [�0.900, 0.863] [0.046, 0.569]
L3S [�3.205, �1.730] [0.096, 1.742] [�0.318, 0.121] [0.881, 2.971] [�1.784, �0.843] [�2.566, �1.304] [�0.260, 0.104]
L1S [�2.496, �1.023] [0.858, 2.465] [�0.122, 0.270] [1.919, 3.922] [�1.311, �0.367] [�1.993, �0.753] [�0.098, 0.199]
CS [�2.136,�0.677] [1.200,2.809] [�0.062,0.332] [2.367,4.339] [�1.074,�0.137] [�1.703,�0.486] [�0.054,0.242]
R1S [�1.793,�0.336] [1.548,3.140] [0.001,0.404] [2.804,4.792] [�0.844,0.091] [�1.435,�0.209] [�0.014,0.291]
R3S [�1.090,0.375] [2.278,3.905] [0.145,0.603] [3.698,5.800] [�0.385,0.564] [�0.889,0.380] [0.092,0.466]

Note: BD: Bayesian estimator with default priors. L3: Bayesian estimator with the prior means deviating 3SD from the true value to the left; L1: Bayesian estima-
tor with the prior means deviating 1SD from the true value to the left; C: Bayesian estimator with the prior means equaling the true value; R1: Bayesian estima-
tor with the prior means deviating 1SD from the true value to the right; R3: Bayesian estimator with the prior means deviating 3SD from the true value to the
right. W: weakly informative priors (prior variance¼ population value�50%); M: mediumly informative priors (prior variance¼ population value�20%); S: strongly
informative priors (prior variance¼ population value�10%).

Table 7. Empirical example 2: the results of MLR analysis.

Para est SE est/SE p

b11 �0.174 0.527 �0.33 0.741
b21 �0.639 0.393 �1.625 0.104
b31 �0.515� 0.196 �2.634 0.008
b01 �0.858� 0.410 �2.093 0.036
b10 �0.017 0.498 �0.034 0.973
b20 1.238�� 0.308 4.020 <.001
b30 0.599� 0.197 3.037 0.002

Note: est: the estimation of parameters; SE: the standard error;�p<.05; ��p<.001.
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reduces the sex differences in violent behavior
(b21 ¼ �0:63, 95% CI ¼ [-1.209, �0.061]).

To further explore the effect of prior specification on
Bayesian estimation in non-normal situations, we imposed
different settings of priors on the regression parameters like
the simulations. Tables 9 and 10 present the results of dif-
ferent estimators in empirical example 2. Bayesian estimator
with seriously deviated prior information obtained terrific-
ally biased parameter estimation. However, when the prior
mean deviation is minor, the corresponding results of par-
ameter estimation are much closer to those of the ML
estimation.

4.2.3. Summary and Discussion
The results of the two empirical examples jointly indicated
the effectiveness of the democratic school health education
intervention. Pupils in the experimental classes develop bet-
ter states of well-being and less violent behavior than those
in the control classes. In addition, pupils with worse base-
line conditions seem to benefit even more from the inter-
vention. Specifically, boys, who probably develop less well-
being and more violent behavior than girls, may gain more
benefits from the intervention in improving well-being and
reducing violent behavior. Likewise, for pupils with more
(vs. less) pre-measured violent behavior, the intervention
reduces the level of post-measured violent behavior more
significantly.

In sum, the empirical examples show similar pattern of
results to the simulation studies. With the decrease of the
prior variance, the influence of prior information on
Bayesian estimation increases rapidly, and the width of the
corresponding confidence interval becomes narrower. When
the prior is strongly informative and the prior deviation is
serious, the Bayesian estimator obtains detrimentally biased
parameter estimation, and may even fail to detect the inter-
vention effects. Bayesian estimation with slightly incorrect
prior information obtains similar results to those of the ML

Table 10. Empirical example 2: the 95% CIs of different estimators.

Estimator b11 b21 b31 b01 b10 b20 b30

MLR [�1.207, 0.859] [�1.409, 0.132] [�0.899, �0.132] [�1.661, �0.054] [�0.993, 0.960] [0.635, 1.842] [0.212, 0.986]
BD [�2.534, 2.038] [�1.769, 0.650] [�0.972, �0.028] [�1.779, 0.017] [�1.752, 1.369] [0.329, 2.012] [0.233, 0.942]
L3W [�0.794, �0.058] [�2.610, �0.320] [�1.244, �0.235] [�2.002, �0.617] [�1.617, �0.311] [0.111, 1.880] [0.209, 0.909]
L1W [�0.436, 0.273] [�1.786, �0.144] [�0.932, �0.139] [�1.404, �0.228] [�0.982, 0.099] [0.624, 1.959] [0.276, 0.883]
CW [�0.281, 0.420] [�1.673, �0.035] [�0.865, �0.100] [�1.224, �0.023] [�0.768, 0.284] [0.704, 2.018] [0.273, 0.878]
R1W [�0.122, 0.573] [�1.597, 0.088] [�0.815, �0.028] [�1.051, 0.209] [�0.598, 0.467] [0.771, 2.094] [0.258, 0.881]
R3W [0.202, 0.916] [�1.320, 0.956] [�0.742, 0.310] [�0.637, 1.122] [�0.192, 1.043] [0.834, 2.967] [0.232, 0.994]
L3M [�0.495, �0.024] [�2.312, �0.741] [�1.275, �0.315] [�1.635, �0.634] [�1.201, �0.380] [0.189, 1.680] [0.029, 0.832]
L1M [�0.264, 0.192] [�1.695, �0.429] [�0.878, �0.199] [�1.191, �0.261] [�0.793, �0.023] [0.761, 1.880] [0.293, 0.829]
CM [�0.156, 0.297] [�1.545, �0.283] [�0.805, �0.143] [�1.020, �0.098] [�0.627, 0.127] [0.851, 1.977] [0.305, 0.829]
R1M [�0.050, 0.405] [�1.433, �0.142] [�0.751, �0.083] [�0.852, 0.112] [�0.468, 0.287] [0.926, 2.073] [0.297, 0.841]
R3M [0.174, 0.629] [�1.069, 0.554] [�0.661, 0.328] [�0.415, 0.702] [�0.140, 0.662] [1.100, 2.944] [0.293, 1.191]
L3S [�0.338, �0.003] [�2.046, �0.930] [�1.193, �0.387] [�1.358, �0.620] [�0.960, �0.374] [0.400, 1.562] [0.014, 0.772]
L1S [�0.172, 0.156] [�1.602, �0.581] [�0.823, �0.252] [�1.022, �0.299] [�0.667, �0.094] [0.850, 1.816] [0.315, 0.779]
CS [�0.090, 0.231] [�1.447, �0.446] [�0.750, �0.196] [�0.872, �0.155] [�0.537, 0.032] [0.957, 1.932] [0.334, 0.789]
R1S [�0.013, 0.311] [�1.322, �0.301] [�0.701, �0.137] [�0.720, 0.003] [�0.399, 0.159] [1.067, 2.058] [0.342, 0.813]
R3S [0.151, 0.474] [�0.924, 0.216] [�0.591, 0.238] [�0.365, 0.426] [�0.135, 0.436] [1.308, 2.777] [0.358, 1.180]

Note: BD: Bayesian estimator with default priors. L3: Bayesian estimator with the prior means deviating 3SD from the true value to the left; L1: Bayesian estima-
tor with the prior means deviating 1SD from the true value to the left; C: Bayesian estimator with the prior means equaling the true value; R1: Bayesian estima-
tor with the prior means deviating 1SD from the true value to the right; R3: Bayesian estimator with the prior means deviating 3SD from the true value to the
right. W: weakly informative priors (prior variance¼ population value�50%); M: mediumly informative priors (prior variance¼ population value�20%); S: strongly
informative priors (prior variance¼ population value�10%).

Table 9. Empirical example 2: the parameter estimation of different
estimators.

Estimator b11 b21 b31 b01 b10 b20 b30

MLR �0.174 �0.639 �0.515 �0.858 �0.017 1.238 0.599
BD �0.100 �0.612 �0.517 �0.818 �0.176 1.215 0.585
L3W �0.429 �1.273 �0.652 �1.239 �0.924 1.122 0.593
L1W �0.088 �0.925 �0.533 �0.795 �0.423 1.298 0.576
CW 0.067 �0.845 �0.490 �0.615 �0.247 1.360 0.569
R1W 0.219 �0.777 �0.449 �0.433 �0.086 1.424 0.560
R3W 0.553 �0.401 �0.355 0.107 0.371 1.625 0.559
L3M �0.264 �1.451 �0.699 �1.109 �0.779 1.053 0.546
L1M �0.039 �1.025 �0.533 �0.713 �0.413 1.330 0.569
CM 0.069 �0.914 �0.486 �0.542 �0.256 1.411 0.564
R1M 0.176 �0.797 �0.440 �0.370 �0.102 1.501 0.559
R3M 0.397 �0.331 �0.281 0.110 0.246 1.835 0.602
L3S �0.172 �1.438 �0.723 �0.978 �0.666 1.048 0.473
L1S �0.010 �1.066 �0.533 �0.650 �0.386 1.339 0.559
CS 0.070 �0.938 �0.485 �0.504 �0.255 1.444 0.560
R1S 0.149 �0.807 �0.435 �0.350 �0.127 1.554 0.563
R3S 0.310 �0.377 �0.232 0.024 0.143 1.945 0.665

Note: BD: Bayesian estimator with default priors. L3: Bayesian estimator with
the prior means deviating 3SD from the true value to the left; L1: Bayesian
estimator with the prior means deviating 1SD from the true value to the left;
C: Bayesian estimator with the prior means equaling the true value; R1:
Bayesian estimator with the prior means deviating 1SD from the true value to
the right; R3: Bayesian estimator with the prior means deviating 3SD from the
true value to the right. W: weakly informative priors (prior varian-
ce¼ population value�50%); M: mediumly informative priors (prior varian-
ce¼ population value�20%); S: strongly informative priors (prior
variance¼ population value�10%).

Table 8. Empirical example 2: the results of Bayesian analysis with DDP.

95% CI

Para est SD Lower 2.5% Upper 2.5%

b11 �0.183 0.429 �1.022 0.677
b21 �0.630 0.290 �1.209 �0.061
b31 �0.516 0.132 �0.766 �0.246
b01 �0.836 0.272 �1.368 �0.302
b10 �0.082 0.338 �0.739 0.604
b20 1.225 0.223 0.773 1.646
b30 0.588 0.108 0.382 0.801

Note: DDP: data� dependent priors; est: the estimation of parameters; SD: the
standard deviation of the posterior distribution; 95% CI: the 95% credible
intervals of parameters.
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estimation, which is consistent with the conclusions of the
simulations.

In addition, the impacts of incorrect prior information
on Bayesian estimation seem relatively more detrimental
when the dependent variable is relatively non-normal, which
is also consistent with the conclusion of the simulation stud-
ies. When specifying incorrect prior information, the bias of
the Bayesian estimator is generally more serious in empirical
example 2 than in empirical example 1. The results of both
empirical examples further validate the conclusions of the
simulations, reminding empirical researchers to be careful
with the impacts of incorrect prior information, especially
when the dependent variables are non-normally distributed.

5. Discussion

In many psychological experiments (e.g., cRCT), researchers
must conduct multilevel modeling to analyze nested data.
Multilevel data are prone to small-sample problems and
may lead to biased estimations in traditional estimators.
Bayesian methods can incorporate prior information for the
estimation. However, due to the lack of empirical research
and theoretical evidence, it is usually challenging to set pri-
ors in real studies correctly. Seriously incorrect informative
priors may lead to destructively biased parameter estima-
tion, but it is unclear how this impacts the analysis in more
specific situations under the multilevel framework. To inves-
tigate the potentially detrimental effects of inaccurate prior
information on Bayesian approaches, we conducted a series
of simulations under the multilevel model framework with
different dependent variable types, sample sizes, and ICCs.
In summary, as expected, regardless of whether the depend-
ent variables were continuous or binary, the overall per-
formance was best for Bayesian estimation with correct
informative priors. Seriously inaccurate informative priors
have devastating impacts on Bayesian analysis, especially in
the cases of larger ICC, smaller level 2 sample size, and
smaller prior variance. When the dependent variable was
non-normal or binary, these adverse effects were more
prominent.

5.1. Continuous Data

First, the influence of incorrect informative priors on par-
ameter estimation changes with the sample size. Consistent
with Holtmann et al. (2016), the current study showed that
larger sample sizes at both levels may lead to a more negli-
gible influence of incorrect informative priors on parameter
estimation. In Bayesian approach, when the sample sizes are
small, the posterior distributions are primarily dependent on
the specifications of the priors. With an increase in the sam-
ple size, the influence of the prior distribution gradually
weakens, and the shape of the posterior distribution approx-
imates that of the likelihood (Lynch, 2007).

Second, for the estimation of the treatment effects b01
(which is usually the focus of cRCT research), a large ICC
may increase the negative impacts of incorrect informative
priors. This tendency is consistent with previous studies,

which concluded that the estimation bias of level 2 effects
increased with ICCs, while power decreased with ICC (Cao
et al., 2019; Finch & French, 2011). However, for the esti-
mation of other regression parameters, the impact of ICC
may be inconsistent across different situations in the current
simulation. This is also consistent with the results of Cao
et al. (2019), which indicated that ICC was highly associated
with estimating the between-level interaction, but not the
within-level or cross-level interaction effects. More research
is warranted to explore the impacts of ICC on different
effects at different levels, taking into consideration the
potential impacts of incorrect informative priors.

In addition, the influence of incorrect informative priors
is weaker when the prior variance is increased. When the
prior variance is relatively large, the adverse effects of incor-
rect informative priors are primarily suppressed. When the
prior variance is small, incorrect informative priors may
negatively influence the Bayesian estimation, even with large
sample sizes. Therefore, in general, it is usually more con-
servative to specify a larger prior variance.

The results of the standard error ratio were similar to
those of previous studies. Generally, the standard error
ratios are larger for Bayesian estimation with informative
priors and increase with a decrease in prior variance, which
indicates that the posterior SDs tend to overestimate the
empirical SDs with small prior variance. However, this
increase in the standard error ratio may also reveal a
decrease in SD estimation due to informative priors
(Holtmann et al., 2016). In addition, Bayesian estimation
with incorrect informative priors tends to overestimate the
standard error more seriously among all informative
Bayesian estimators. Therefore, in Bayesian analysis,
researchers often need to rely on the credibility interval to
determine the significance of the parameters.

In the present study, we also considered situations in
which the dependent variables were non-normal. In these
cases, the overall performance of the parameter estimation
is slightly worse than in the cases in which the dependent
variables are normally distributed, and the impacts of incor-
rect informative priors are more detrimental. This is consist-
ent with the results of previous studies, which indicated that
compared to the conditions in which the dependent varia-
bles follow a normal distribution, informative priors tend to
have a more significant impact on parameter estimation
under non-normality conditions (Kelava & Nagengast,
2012). Therefore, when the dependent variables violate the
assumption of normality, researchers should be more cau-
tious about the specification of informative priors or use
more robust estimation approaches to account for non-nor-
mality (e.g., Asparouhov & Muth�en, 2016; Lai, 2019).

5.2. Binary Data

The present study conducted simulations for binary data,
both with and without random slopes. Consistent with pre-
vious studies (Depaoli & Clifton, 2015; Muth�en, 2010), in
Study 3.1, ML became computationally demanding and
might fail to converge when the dependent variable is
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binary with random slope effects. In Study 3.2, when analyz-
ing data without random slope effects, WLSMV provided a
biased estimation of the standard error in small samples,
which is consistent with previous research (Muth�en
et al., 2015).

Similar to Asparouhov and Muth�en’s (2010) simulations,
Bayesian estimation is more susceptible to prior information
when the dependent variables are binary. The impact of
incorrect informative priors is much more detrimental than
under continuous conditions. The estimation of parameters
is more dependent on the specification of informative priors
when the dependent variables are categorical, thus increas-
ing the negative impacts of incorrect informative priors. In
Studies 3.1 and 3.2, increasing the between-level sample size
can buffer the adverse effects of incorrect informative priors
to a larger extent.

Overall, regardless of whether the dependent variables
are continuous or binary, the impact of informative priors is
similar. Bayesian estimation with correctly informative pri-
ors performed best among the different estimators, espe-
cially in terms of the MSE and power. Bayesian analysis
with seriously incorrect prior information (i.e., the mean
hyperparameters of priors deviated 3SD from the corre-
sponding true values) led to seriously biased parameter esti-
mation and low power. In addition, a large ICC, a small
sample size at level 2, and a small prior variance may fur-
ther increase the negative impacts of incorrect prior
information.

5.3. Limitations and Prospects

Despite the novel contribution to incorrect informative pri-
ors, there are some limitations to the present research. First,
the present study explored the impacts of inaccurate prior
information on Bayesian approaches with different depend-
ent variable types, sample sizes, and ICCs, but could not
cover all the conditions in the real studies. We mainly
focused on the sample sizes common in cRCT research, but
the sample sizes may differ significantly from the current
simulations in real studies. Moreover, to control the number
of conditions, only three levels of sample sizes at the
within-level (i.e., 30, 60, 150) are specified in the current
simulations. Future studies should include a larger number
of sample size conditions to better understand the impacts
of incorrect informative priors. In addition, the present
research assumed balanced sample sizes within groups, but
the group sizes are usually unbalanced in actual situations.
Further research is needed to explore whether incorrect
informative priors will lead to more detrimental impacts if
the group sizes are unbalanced.

Second, to simplify the simulations, we only investigated
the effects of skewness (negatively or positively skewed) in
the Study 2. However, the magnitude of skewness and kur-
tosis may also significantly impact model fitting and param-
eter power (Foss et al., 2011). Future studies are warranted
to explore the influence of incorrect informative priors on
parameter estimation under different magnitudes of skew-
ness and kurtosis.

Considering that the target of cRCT research is generally
the investigation of treatment effect b01, we mainly focused
on the estimation of b01 under different data conditions.
However, for the analysis of other regression parameters,
the impact of ICC may be inconsistent across various situa-
tions in the current simulation. Further research is war-
ranted to explore the effects of incorrect informative priors
under different levels of ICC.

5.4. Practical Recommendations

Traditional frequentist estimators rely on the asymptotic
theory and require large sample sizes to obtain appropriate
parameter estimation. When the sample size (especially the
level-2 sample size) is relatively large, traditional frequentist
methods (e.g., ML and WLSMV) perform well in the esti-
mated models and, thus, are highly recommended.

However, in small sample sizes, traditional methods may
yield biased estimations and low power. Bayesian
approaches are advantageous in dealing with small sample
sizes but are, at the same time, sensitive to the specification
of priors. When the sample sizes are small, the software-
default priors (whose distribution ranges are often very
wide) may seriously influence the efficiency of MCMC esti-
mation, and lead to biased parameter estimation in small
samples (Erp et al., 2018; Smid & Winter, 2020). Therefore,
researchers should not intuitively use default “non-
informative” priors without careful consideration, and
should search for as much information as possible (from
previous research and knowledge, specialistic advice, and so
on) to help specify proper priors. Note that if the dataset is
considered sampled from a different population from previ-
ous studies in the current research, researchers should spe-
cify the priors with slightly larger prior variance (larger than
that from the previous studies) to take the uncertainty of
priors into consideration (Miocevic et al., 2017). Although
facing some risks of inaccurate priors, informative priors
with thoughtful consideration can narrow the distribution of
parameter priors to a relatively reasonable range, which
helps the MCMC algorithm reach to an accurate estimation.

In practice, however, information about the prior specifi-
cation is often rare, and the exact prior distributions of the
parameters are unclear. In these situations, researchers often
suggest specifying DDP (also known as empirical Bayes pri-
ors; Erp et al., 2018; McNeish, 2016b ) or admissible-range-
restricted priors (according to the admissible values of the
parameters; McNeish, 2019) to the parameters.
Compromising between classical frequentist and Bayesian
approach, DDP adds more information about the data to
the Bayesian analysis, and may improve the stability of the
MCMC sampler (Carlin & Louis, 2000; Casella, 1992). It
generally mitigates the small-sample bias in the models, and
may obtain much better parameter estimation than fre-
quentist or Bayesian analysis with non-informative priors
(McNeish, 2016b). Although not so powerful as thoughtful
informative priors, DDP may obtain low estimation bias for
structural parameters (comparable to the thoughtful priors),
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and even relatively lower bias for variance parameters (Smid
et al., 2019).

Some studies, however, indicated that DDP may result in
poor performance when the sample size is small and the
model is complex (e.g., growth mixture model; Depaoli,
2013), and suggested that only highly informative priors
obtain accurate estimates. In addition, DDP may underesti-
mate the standard errors in Bayesian analysis, as it ignores
the variability of the hyperparameters in the random effect
covariance matrix (Carlin & Louis, 2000). However, consid-
ering the detrimental influence of inaccurate informative
priors, it may be safer to specify priors that are not so
informative in empirical research. More research are needed
to investigate the influence of DDP on Bayesian estimation
in complex models (e.g., multilevel models), and the poten-
tial of using DDP to decrease the risks of specifying inaccur-
ate prior information.

In sum, researchers should always be alert to the possibil-
ity of specifying inaccurate informative priors. For models
estimated in the current simulations, the performance of
Bayesian estimation with minorly incorrect informative pri-
ors (i.e., the prior mean deviates 61SD from the population
value) is generally not too poor. However, when the ICC is
large, or the sample size at level 2 is small, seriously incor-
rect informative priors (i.e., the prior mean deviates 63SD
from the population value) may lead to seriously biased par-
ameter estimation. In addition, non-normally distributed or
binary dependent variables may further increase the impact
of incorrect informative priors. Considering the severe
impacts of incorrect prior information in these situations,
we advise researchers to reduce the possible effects of priors
by increasing the sample sizes at both levels (especially at
level 2) as much as possible or increasing the prior variance
to some extent. In addition, a prior sensitivity analysis is
often suggested to check the robustness of the conclusions
(Erp et al., 2018).
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