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Evaluation and Comparison of SEM, ESEM, and BSEM in Estimating Structural Models 
with Potentially Unknown Cross-loadings
Xiayan Weia,b*, Jiasheng Huanga*, Lijin Zhang a, Deng Panc, and Junhao Pan a

aSun Yat-sen University; bZhejiang University; cHuazhong University of Science and Technology

ABSTRACT
Cross-loadings are common in multidimensional instruments; however, they cannot be appropriately 
addressed in conventional structural equation modeling (SEM) owing to the assumption of zero cross- 
loadings in standard confirmatory factor analysis (CFA). Although it has been proposed that exploratory 
structural equation modeling (ESEM) and Bayesian structural equation modeling (BSEM) can address this 
issue more flexibly, their performance in structural parameter estimation has not been adequately 
compared. This study uses simulated data to evaluate and compare SEM, ESEM, and BSEM in estimating 
structural models under different manipulation conditions (i.e., sample size, target loading, cross-loading, 
and path coefficient). The results demonstrated that the performances of these approaches were similar in 
the case of zero cross-loadings. SEM performed worse as cross-loadings increased, and the performance of 
BSEM significantly depended on the accuracy of the priors for cross-loadings. ESEM was inferior to BSEM 
with correctly specified prior means for cross-loadings in most evaluation measures and exhibits unstable 
performance in conditions with small target loadings. Recommended strategies for selecting an appro-
priate modeling approach are discussed based on our findings.
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Confirmatory factor analysis (CFA) is widely adopted in the 
structural equation modeling (SEM) framework to evaluate the 
measurement model for the factor structures of latent factors. 
Usually, this approach, also known as the standard CFA by 
Kline (2015), assumes zero cross-loadings (i.e., loadings on 
non-targeted factors are constrained to be zero) to reflect 
a more parsimonious and interpretable factor structure in 
which each indicator is only influenced by a specific targeted 
factor (Asparouhov & Muthén, 2009). Such a demanding 
assumption has been criticized as unrealistic because it is 
practically impossible to perfectly design pure indicators of 
one construct (or factor), and most existing multi-factor 
instruments fail to meet these criteria (Marsh et al., 2009; 
Murray et al., 2019). The inappropriate constraints of zero 
cross-loadings on all non-targeted factors usually result in 
poor model fit in the applications of SEM (Marsh et al., 
2014). Moreover, cross-loadings sometimes have substantive 
meaning. For example, psychological symptoms can reflect 
multiple diagnostic factors rather than a solely single factor 
(Murray et al., 2019). In practice, this overly restrictive 
assumption can lead to problematic compensating strategies, 
including the misuse of modification indexes (Asparouhov & 
Muthén, 2009; MacCallum et al., 1992). The misspecification of 
zero loadings may also generate inflated factor correlations, 
thereby distorting structural relationships or triggering biased 
estimates in full SEM with other outcome variables 
(Asparouhov & Muthén, 2009; Marsh et al., 2014, 2009).

To address the limitations of the constraint of zero cross- 
loadings in standard CFA, nonstandard CFA models, in which 
some indicators load on more than a single factor or some 
error terms covary, have been proposed (Kline, 2015). 
However, Xiao et al. (2019) suggested that the nonstandard 
CFA remains unsuitable for data with many cross-loadings and 
impractical for the unknown cross-loading or complex struc-
ture cases. Among the novel approaches that have been pro-
posed to extend the overly restrictive CFA measurement model 
of the conventional SEM, exploratory structural equation mod-
eling (ESEM; Asparouhov & Muthén, 2009) and Bayesian 
structural equation modeling (BSEM; B. Muthén & 
Asparouhov, 2012) are two of the most widely adopted 
methods.

Conventional structural equation modeling (SEM)

To explain ESEM and BSEM, we start with the conventional 
SEM with continuous indicators. For the i-th participant, let yi 
be a random vector of p indicator variables that satisfies the 
following measurement model: 

yi ¼ μþ Λωi þ εi; i ¼ 1; 2; . . . ;N (1) 

where μ represents the p� 1 vector of intercept, and Λ 
represents the p� q loading matrix that reflects the relation-
ship between observed indicators in yi and the q� 1 vector of 
latent variables in ωi. The p� 1 vector of random errors in εi, 
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which follows N½0;Ψ�� and Ψ� is typically a diagonal matrix. In 
conventional SEMs, the structure of Λ is specified a priori 
according to substantive theory such that the measurement 
model is a standard CFA. To assess the interrelationships 
among latent variables, ωi is commonly partitioned into two 
parts ðηT

i ; ξT
i Þ

T , where ηiðq1 � 1Þ ,and ξiðq2 � 1Þ respectively 
represent the vectors of endogenous and exogenous latent 
variables. The interrelationships between ηi and ξi are assessed 
via the following linear structural model: 

ηi ¼ Πηi þ Γξi þ δi; i ¼ 1; 2; . . . ;N (2) 

where Πðq1 � q1Þ and Γðq1 � q2Þ are unknown structural 
coefficient matrices, the distribution of ξi is assumed to be 
N 0;Φ½ �, and δi is a q1 � 1 vector of residuals, which followings 
N 0;Ψδ½ �, Ψδ is diagonal.

Exploratory structural equation modeling (ESEM)

The ESEM approach was proposed to introduce modeling 
flexibility to conventional SEM by incorporating the optimal 
features of exploratory factor analysis (EFA) into the SEM 
framework (Asparouhov & Muthén, 2009). Integrating EFA 
and CFA when establishing the measurement model 
(Equation 1) allows cross-loadings to be freely estimated, 
rather than being constrained to zero, which provides more 
flexible and realistic estimations for the factor structure (Marsh 
et al., 2014). Meanwhile, it reserves distinct features of conven-
tional SEM, such as providing goodness-of-fit statistics and the 
estimation of relationship among factors via a structural model 
formulated in the same way as Equation 2. More technical 
details of the ESEM can be referred to Asparouhov and 
Muthén (2009). ESEM is also applicable to methodological 
advancements associated with CFA and SEM, including multi-
ple-group analysis, measurement invariance, and latent growth 
modeling (Marsh et al., 2010, 2009).

Existing studies have demonstrated that ESEM outperforms 
the conventional SEM approach in some aspects. ESEM can 
provide closer-to-reality estimates of the factor structure owing 
to the relaxation of the constraint of zero cross-loadings, 
thereby generating more accurate estimations of factor correla-
tions and structural regression coefficients (Mai et al., 2018; 
Marsh et al., 2010; Xiao et al., 2019). The more realistic factor 
structure of the ESEM can also facilitate a better fit to the data, 
which guarantees subsequent advanced analyses (e.g., mea-
surement invariance and latent growth models) to be more 
appropriately conducted (Marsh et al., 2011; Sánchez- 
Carracedo et al., 2012). Moreover, ESEM accomplishes the 
task of searching all cross-loadings in one step, and circum-
vents potential pitfalls triggered by a sequence of modifications 
of the CFA model. Therefore, it is suggested to be a more 
appropriate and simpler alternative to the highly prevalent 
post-hoc model searches using modification indexes in CFA 
when the zero cross-loading assumption is unrealistic 
(Asparouhov & Muthén, 2009; Schmitt, 2011).

However, the feature of freely estimating all cross-loadings 
also triggers possible limitations in the ESEM. For example, 
such an approach may confound constructs that should be 
separated according to the substantive theory or specific 

research question (Marsh et al., 2019). In addition, the 
increased number of free parameters can undermine the parsi-
mony of the model, especially when the model is large and the 
sample size is relatively small (Marsh et al., 2019, 2014).

Bayesian structural equation modeling (BSEM)

By applying the Bayesian analysis in the SEM framework, 
BSEM considers unknown parameters as random variables, 
rather than constants, and specifies each parameter with 
a prior distribution that reflects the knowledge of the para-
meter from theoretical hypotheses, previous studies, and other 
resources (e.g., pilot studies and experts) (B. Muthén & 
Asparouhov, 2012; Zondervan-Zwijnenburg et al., 2017). 
Using Bayesian analysis, the posterior distribution of the para-
meter can then be determined based on prior and observed 
data (Guo et al., 2019; B. Muthén & Asparouhov, 2012). By 
incorporating prior information into the analysis, the Bayesian 
approach can better reflect substantive theories; hence, it has 
the potential to improve estimation efficiency (Yuan & 
MacKinnon, 2009).

A typical BSEM analysis can be outlined in the following 
steps:

(1) Define a SEM model M with unknown parameters Θ, 
that is, the unknown parameters in μ, Λ, Π, Γ, Ψ�, Ψδ 
and Φ in Equations 1 and 2.

(2) Assign prior distribution of Θ under model M, say, 
pðΘjM).

(3) Let Y be the observed data, construct the posterior 
distribution of Θ, say, pðΘjY;MÞ by combining the 
sample information in the likelihood function 
pðYjΘ;MÞ and prior information in pðΘjMÞ based on 
Bayes’ Theorem.

(4) The posterior distribution pðΘjY;MÞ is usually 
approximated by using a Markov chain Monte Carlo 
algorithm, which iteratively simulates a large number of 
samples from pðΘjY;MÞ. After discarding the samples 
obtained at the burn-in phase, Bayesian inference of Θ 
can be carried out on the basis of simulated samples, for 
example, the Bayesian estimate, the numerical standard 
error estimates, as well as the highest posterior density 
(HPD) intervals of Θ.

Regarding cross-loadings in Λ of Equation 1, BSEM replaces 
the constraint of zero cross-loadings in conventional SEM with 
a “softer” constraint that specifies small-variance informative 
priors concentrated around zero for the cross-loadings. Let λjk 
be the factor loading in Λ for the j-th indicator associated with 
the k-th latent variables. As suggested by B. Muthén and 
Asparouhov (2012), the normal prior (also known as 
Bayesian ridge prior) is assigned to λjk, that is, λjk,N 0; σ2

jk

� �
, 

where the prior variance σ2
jk is given by researchers. If the λjk 

represents the cross-loading on non-targeted factor, σ2
jk is given 

small value, which makes the posterior distribution of λjk 
generally do not deviate largely from zero. Hence, the small- 
variance informative priors concentrated around zero for 
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cross-loadings better reflect the underlying substantive theories 
and detects possible misspecifications than CFA (Asparouhov 
et al., 2015). Such an approach retains the CFA model while 
allowing cross-loadings to be nonzero (Murray et al., 2019). 
More technical details of BSEM including specification of 
priors for other unknown parameters can be referred to 
B. Muthén and Asparouhov (2012).

Owing to prior information, BSEM is particularly beneficial 
and flexible in applications where the model specification is not 
identified in a likelihood-based approach (B. Muthén & 
Asparouhov, 2012; Pan et al., 2017; Scheines et al., 1999). 
Moreover, model modification in conventional SEM with 
modification indexes can solely free one parameter at a time, 
which often triggers a long series of modifications, BSEM can 
free all parameters simultaneously; hence, it only requires 
a single-step modification analysis, which significantly reduces 
the risk of capitalizing on chance. BSEM is also appealing in 
studies with small samples because Bayesian analysis does not 
depend on large sample approximations, as conventional SEM 
using maximum likelihood (ML) estimation does (Yuan & 
MacKinnon, 2009). In addition, it can provide less inadmissi-
ble solutions, convergence issues, and more precise estimations 
when taking the prior information into consideration 
(Zondervan-Zwijnenburg et al., 2017). A large amount of evi-
dence has demonstrated that Bayesian analysis performs better 
than that of ML methods including conventional SEM in small 
samples (Van de Schoot et al., 2017).

Because prior information is a key component in Bayesian 
analysis, the specification of priors is a potentially challenging 
issue in BSEM (MacCallum et al., 2012). The choice of priors 
substantially influences the estimates (Depaoli & Clifton, 2015; 
Van Erp et al., 2018). The influence of priors can be more 
prominent in small samples, where the application of Bayesian 
analysis is highly valued (Van de Schoot et al., 2017). Although 
it is time-consuming and challenging to construct proper 
informative priors, the possible bias resulting from vague or 
improper priors in BSEM deserves to be noted (Van Erp et al., 
2018; Zondervan-Zwijnenburg et al., 2017).

Analysis of cross-loadings using SEM, ESEM, and BSEM

Conventional SEM with standard CFA as a measurement 
model has a strict assumption of zero cross-loadings, which 
has been determined to be overly restrictive in practice. To 
address this issue, ESEM allows all cross-loadings to be freely 
estimated, while BSEM specifies small-variance priors centered 
around zero for cross-loadings to relax such a constraint. Based 
on this notion, previous studies with both simulated and 
empirical data consistently found that ESEM and BSEM out-
performed conventional SEM when non-ignorable cross- 
loadings existed (Asparouhov & Muthén, 2009; Mai et al., 
2018; Marsh et al., 2010, 2014; B. Muthén & Asparouhov, 
2012).

A few studies have compared the performance of ESEM and 
BSEM. Reis (2017) applied ESEM and BSEM to the empirical 
data of a multidimensional assessment and found that both 
approaches consistently revealed substantive cross-loadings in 
the instrument, which helps to improve the understanding of 
multidimensional constructs. Comparing the performance of 

BSEM and ESEM on simulated and empirical data, Guo et al. 
(2019) reported that ESEM outperformed BSEM with normal 
priors of cross-loadings (mean = 0, variance = .01) in unba-
lanced factor structures (only positive cross-loadings exist); 
however, the reverse was true for balanced factor structures 
(the sum of cross-loadings was zero for each factor). Another 
study found that with correct priors of cross-loadings 
(mean = the true value of cross-loadings, variance = .01), 
BSEM exhibited better performance than ESEM on simulated 
data (Xiao et al., 2019). However, in models with ordinal 
indicators, it was found that compared to BSEM, ESEM yielded 
less biased estimates for both measurement and structural 
parameters when the sample size was relatively large; however, 
it produced a higher rate of inadmissible solutions in small 
samples (Liang et al., 2020).

Juxtaposing ESEM and BSEM, although the studies above 
provide information about their performance under different 
conditions, these approaches have their inherent limitations. 
There is insufficient research to provide general guidelines on 
selecting the appropriate analytical approach among SEM, 
ESEM, and BSEM for analyzing structural regression models 
when the measurement model involves potentially unknown 
cross-loadings. To estimate the structural regression model 
where cross-loadings were present, Mai et al. (2018) compared 
the performance of SEM, ESEM, and manifest regression ana-
lysis, and ESEM was recommended. However, BSEM was not 
considered in their research; hence, we have insufficient knowl-
edge on the relative performance between ESEM and BSEM 
when the structural regression model was considered. Liang 
et al. (2020) focused on the performance of ESEM and BSEM, 
and only priors with zero mean and smaller variance were 
considered for cross-loadings. However, the benefits of BSEM 
rely on correctly specified priors (Xiao et al., 2019; Zondervan- 
Zwijnenburg et al., 2017), and adopting a smaller variance 
prior indicates that a researcher was more confident about 
the cross-loading being close to zero. Priors with zero mean 
and relatively larger variance, which indicates less confidence, 
were not involved. However, as discussed in the study by 
B. Muthén and Asparouhov (2012), when the prior variance 
becomes larger, the model moves closer to being nonidentified.

The present investigation

The objective of the present investigation is to compare the 
performance of conventional SEM, ESEM, and BSEM in esti-
mating structural models with potentially unknown cross- 
loadings. Specifically, we adopted simulated data to evaluate 
the performance of these three approaches under different 
manipulated conditions (i.e., sample size, target loading, cross- 
loading, and path coefficient).

Simulation

Design

The population model was adapted from the investigation 
conducted by Mai et al. (2018). It contains three latent vari-
ables, with two being exogenous (ξ1 and ξ2) and one being 
endogenous ðη). The factor correlation between ξ1 and ξ2 is set 
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as ρ = .30, which represents a medium correlation size (Cohen, 
1988). In this model, a) the expectation of each error term is 
assumed to be zero, b) the error terms are independent of each 
other, and c) any of the error terms is independent of the latent 
variables ξ1, ξ2 and η. This study did not assume homoscedas-
ticity for error terms. More details regarding the population 
model are presented in Figure 1.

This simulation study manipulated five variables, which 
include:

(1) The standardized values of target loadings are λT = .55, 
.70, .84, and .95, which represent different sizes of target 
loadings. These values approximate different levels of 
reliability of the indicator to the factor, which equals the 
square of the target loadings (i.e., .30, .50, .70, and .90) 
(Mai et al., 2018).

(2) The standardized values of the cross-loadings are 
λC = 0, .10, .20, and .30, with the latter three repre-
senting cross-loadings of little, some, and real impor-
tance (B. Muthén & Asparouhov, 2012). The 
standardized target loading and cross-loading for 
the same indicator should satisfy the restriction that 
λT

2 þ λC
2 þ 2ρλTλC � 1.1 Hence, when λT ¼ :95, λC 

can only be 0 or .10.
(3) The standardized values of the path coefficients γ1 and 

γ2 can be 0, .14, .36, or .51, with the latter three repre-
senting small, medium, and large effect sizes (Preacher 
& Kelley, 2011) and γ2 ≥ γ1. Therefore, there are 10 
combinations of (γ1, γ2), that is (0, 0), (0, .14), (0, .36), 
(0, .51), (.14, .14), (.14, .36), (.14, .51), (.36, .36), (.36, 
.51), and (.51, .51).

(4) The sample size was N = 100, 200, and 500, representing 
small, medium, and large samples, respectively. 
A sample size of 100 is considered to be the minimum 

for SEM (Boomsma, 1982), and 500 is considered to be 
large enough to provide unbiased estimates for most 
applied studies (Kyriazos, 2018).

(5) Modeling approaches: Conventional SEM, ESEM, and 
BSEM. Both SEM and ESEM use maximum likelihood 
(ML) for estimation. For SEM, the models were esti-
mated without cross-loadings or further adaptations 
based on the modification index. For ESEM, Geomin 
rotation, the default rotation method of Mplus, was 
used. Although other rotation methods can be consid-
ered, Geomin rotation is frequently adopted in ESEM 
and EFA, and it performs well for a two-factor EFA 
(Asparouhov & Muthén, 2009). For BSEM, we consid-
ered four conditions for informative priors of cross- 
loadings:
a. BSEM-(CL, .01): The correctly specified prior of 

cross-loadings, in which the prior mean is the true 
value of cross-loading, and the prior variance is .01.

b. BSEM-(0, .01): A prior with a small variance, in 
which the prior mean is 0 and the prior variance is 
.01.

c. BSEM-(0, .04): A prior with medium variance, in 
which the prior mean is 0 and the prior variance is 
.04.

d. BSEM-(0, .09): A prior with a large variance, in 
which the prior mean is 0 and the prior variance is 
.09. Although .09 is usually not considered a large 
prior variance in traditional Bayesian analysis, in the 
context of standardized cross-loadings in BSEM, 
a prior of zero mean and variance of 0.09 allows 
prior distribution to lie in [−0.59, 0.59]. Therefore, 
BSEM-(0, .09) was used to represent a condition of 
a large prior variance compared with the variances of 
0.01 and 0.04 in this study.

Figure 1. Population model of the simulated data.

For an indicator, for example, x1, loads concurrently on two latent variables (�1 and �2) Var x1ð Þ ¼ Var λT � �1 þ λC � �2ð Þ þ Var εð Þ ¼ λT
2Var �1ð Þ

þ λC
2Var �2ð Þ þ 2λT � λC � ρ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var �1ð ÞVar �2ð Þ

p
þ Var εð Þ. Because the variances of the factors and indicators were equal to 1.0, λT

2 þ λC
2 þ 2λT � λC � ρ ¼ 1 � Var εð Þ. 

Because Var εð Þ � 0, λT
2 þ λC

2 þ 2λT � λC � ρ � 1.
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The priors in b), c), and d) mimic the situation in empirical 
studies where zero mean indicates the expectation of no cross- 
loadings, and different variances indicate the varied levels of 
confidence in the expectation. Note that when λC ¼ 0, BSEM- 
(CL, .01), and BSEM-(0, .01) are the same.

In summary, these experimental factors resulted in a total of 
2520 (14 × 10 × 3 × 6) conditions. We simulated 500 data sets 
for each condition and fitted SEM, ESEM, and BSEM with each 
simulated data set separately.

Implementation

Monte-Carlo simulations were conducted using Mplus 7 (L. 
Muthén & Muthén, 1998). The SEM and ESEM models were 
estimated based on the default ML estimator and the default 
ML estimator and GEOMIN rotation, respectively. In BSEM, 
the default non-informative priors in Mplus are assigned to 
unknown parameters other than cross-loadings. Two parallel 
chains were used to check the convergence of the BSEM model 
with potential-scale reduction (PSR). For each replication, 
BSEM models were estimated where PSRs were verified to be 
less than 1.10 for all parameters. The Mplus scripts are avail-
able in Appendix 1 of the online supplemental materials.

Method

The performance of different modeling approaches was eval-
uated in terms of the following measures:

(1) Model convergence rate: The ratio of the number of 
converged replications to the total number of replica-
tions (500) under each experimental condition.

(2) Model rejection rate: The proportion of the number of 
replications where the model was rejected in the total 
number of converged replications under each experimen-
tal condition. The ML Chi-square tests were used for the 
SEM and ESEM, and a p-value less than 0.05 triggered 
a rejection of the model (Kline, 2015). The posterior pre-
dictive p (PPp) value was adopted to evaluate the model fit 
in BSEM, which quantified the discrepancy between the 
original data and the replicated data at Markov chain 
Monte Carlo (MCMC) iterations. A PPp value smaller 
than 0.05 indicates poor model fit, which triggers 
a rejection of the model (B. Muthén & Asparouhov, 2012).

(3) Relative bias of estimation (RBEST): The ratio of bias 
(i.e., the average difference between the estimated and 
true values across converged replications) to the true 
value, is a quantitative measure of estimation accuracy. 
A positive RBEST value indicates overestimation, 
whereas a negative value indicates underestimation. 
Generally, an acceptable RBEST ranges from −.1 to .1 
and an ignorable RBEST ranges from −.05 to .05 
(Hoogland & Boomsma, 1998).

(4) Relative bias for standard error (RBSE): The calculation 
is similar to RBEST with the standard deviation of 
estimates across converged replications considered as 
the true value, which evaluates the precision of estima-
tions. An acceptable RBSE ranges from −.1 to .1 
(Hoogland & Boomsma, 1998).

(5) Mean-square error (MSE): The average of the squared 
deviations of estimates, in which the deviations are 
calculated by subtracting the true value from the para-
meter estimates under each condition, which represents 
the trade-off between estimation accuracy and preci-
sion. A smaller MSE value indicates a more efficient 
parameter recovery.

(6) Statistical power: The rate of statistically significant 
coefficients in the totally converged replications under 
each condition. This calculation was conducted under 
the condition that the path coefficient was non-zero in 
the population.

(7) Type I error rate: The calculation is similar to statistical 
power, but was conducted under the condition that the 
true value of path coefficients was zero. We calculated 
the type I error rate for γ2 in the conditions γ1 = 0 and 
γ2 = 0. The acceptable range of type I error rate is [.025, 
.075] (α = .05) (MacKinnon et al., 2004).

Results

Because the results under different conditions of path coeffi-
cients were similar, as well as the results for γ1 and γ2, we 
selectively present the evaluation performance for γ2 under the 
condition that γ1 = .14 and γ2 = .36, unless otherwise specified. 
The detailed results of the model evaluation under all condi-
tions are available in Appendices 2–7 of the supplemental 
materials. Moreover, we only present the evaluation perfor-
mance in terms of path coefficients in the main text because 
this study focuses on comparing different approaches for esti-
mating structural models. Readers can refer to supplemental 
materials for the results regarding factor correlations.

Model convergence rate

Figure 2 illustrates the convergence rate of the model using 
different modeling approaches and conditions. As illustrated in 
Figure 2, BSEM-(CL, .01), BSEM-(0, .01), BSEM-(0, .04), and 
BSEM-(0, 09) demonstrate excellent convergence rates under 
all conditions (> .99). Although SEM exhibits slightly poorer 
convergence than BSEM under some conditions with small 
target loadings ðλT ¼ :55Þ and relatively large cross-loadings 
ðλC ¼ :20; :30Þ, the lowest convergence rates of SEM are larger 
than .96. However, under some conditions of path coefficients 
(e.g., γ1 = .36, γ2 = .36), the convergence of SEM was generally 
better than that of BSEM when the target loadings were small 
and cross-loadings were relatively large. The detailed results of 
the model convergence rate under all conditions are presented 
in Appendix 2. ESEM demonstrated a salient decrease in the 
convergence rate with increasing cross-loadings, dropping to 
a convergence rate as low as .56, which was alleviated in larger 
samples and in data with larger target loadings.

Model rejection rate

Figure 3 presents the model rejection rates based on different 
modeling approaches and conditions. SEM consistently 
demonstrated higher rejection rates than the BSEM approach, 
followed by ESEM. The model rejection rates of SEM were 
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alleviated for larger sample sizes. Because SEM estimated 
models without any cross-loadings, it was logical that the 
resulting model exhibited relatively higher rejection rates in 
conditions with non-zero cross-loadings. Using a cutoff of .05 
for PPp, the rejection rates of BSEM-(0, .01) were slightly 
enhanced as the cross-loadings increased in small samples 
with small target loadings ðλT ¼ :55Þ. In comparison, 
BSEM-(CL, .01), BSEM-(0, .04), and BSEM-(0, .09) demon-
strated stably low rejection rates close to zero under most 
conditions. Because PPp cutoffs of .10 and .01 are also reason-
able (B. Muthén & Asparouhov, 2012), we conducted addi-
tional analyses for BSEM approaches using multiple cutoffs 
and found that the results were similar to those using a cutoff 
of .05 (Appendix 3, Table A3.11–A3.30).

Relative bias of estimation (RBEST)

Figure 4 presents the RBEST of γ2 using different modeling 
approaches and conditions. In general, the RBEST of SEM and 
BSEM with cross-loading prior means of 0 substantively ele-
vated as cross-loadings increased, which was alleviated by 
increased target loadings and sample sizes. A similar pattern 
was also observed in the performance of ESEM, except that the 
RBEST of ESEM exhibited relatively large fluctuations in the 
conditions of a small target loading with a medium sample size 
ðλT ¼ :55; N ¼ 200Þ. Compared with those of the other 

approaches, the RBEST of BSEM-(CL, .01) was consistently 
lower under most conditions. Except for the conditions of 
a small target loading with a small sample size 
ðλT ¼ :55; N ¼ 100Þ, BSEM-(CL, .01) could provide accep-
table RBEST (i.e., [−.10, .10]), despite increased cross-loadings.

Relative bias for standard error (RBSE)

Figure 5 presents the RBSE of γ2 using different modeling 
approaches and conditions. In conditions with concurrent 
small target loadings and small or medium sample sizes 
ðλT ¼ :55; N ¼ 100; 200Þ, all approaches fail to stably pro-
vide acceptable RBSE, regardless of the level of cross-loading. 
Under other conditions, SEM outperformed the other model-
ing approaches in providing precise path coefficients, thus 
exhibiting a more acceptable RBSE of γ2, followed by BSEM- 
(CL, .01) and ESEM. BSEM with cross-loading prior means of 0 
did not demonstrate evident advantages over other approaches, 
regardless of different prior variances.

Mean-square error (MSE)

Figure 6 presents the MSE of γ2 using different modeling 
approaches and conditions. When the target loading was 
small ðλT ¼ :55Þ, the MSE of SEM and BSEM with cross- 
loading prior means of 0 exhibited sharp enhancement as 

Figure 2. Model convergence rate with γ1 = .14 and γ2 = .36.
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cross-loadings increased, some of which reached an extreme 
level. The MSE of the ESEM exhibited large fluctuations when 
the target loading was small, especially in the medium sample 
size (N = 200). However, as the target loadings increased, the 
performance in terms of the MSE of all modeling approaches 
was substantially improved. The MSE of BSEM-(CL, .01) was 
more stable than that of the other approaches, which increased 
occasionally; however, it remained low under most conditions, 
ranging from 0.003 to 0.141.

Statistical power

Figure 7 presents the statistical power of γ2 using different 
modeling approaches and conditions. In general, the statistical 
power demonstrates a declining trend with increasing cross- 
loadings, and an increasing trend with increasing sample sizes 
and target loadings. In the case of zero cross-loadings, all 
modeling approaches demonstrated relatively similar statistical 
power. When cross-loadings existed, BSEM-(CL, .01) outper-
forms the other approaches under most conditions.

Type I error rate

Figure 8 presents the type-I error rate of γ2 using different 
modeling approaches and conditions when γ1 = 0 and γ2 = 0. 
Detailed type I error rates are available in Appendix 8 of the 

supplemental materials. BSEM-(CL, .01) outperformed the other 
approaches and demonstrated acceptable type I error rates 
under all conditions, followed by BSEM-(0, .01), BSEM-(0, 
.04), and ESEM. When the target loadings are small, the type 
I error rate of the SEM substantially decreased as cross-loadings 
increased, reaching a lower-than-acceptable level. Compared 
with other approaches, BSEM-(0, .09) provided lower-than- 
acceptable type-I error rates under more conditions.

Discussion

In psychological research, it is important to investigate and 
understand the true factor structure before elucidating the 
relationships among different constructs via full SEM analysis. 
The potential cross-loadings complicate this process; hence, 
they may affect the estimation of the structural parameters in 
the full SEM model. Based on simulation studies covering 
different sample sizes, target loadings, cross-loadings, and 
structural regression coefficients, this study found that ESEM 
and BSEM provide flexibility in estimating all possible cross- 
loadings under different frameworks compared to conven-
tional SEM. Our findings advance the existing literature by 
providing insights into the performance of conventional 
SEM, ESEM, and BSEM for estimating a structural model. 
These findings are summarized and discussed as follows

Figure 3. Model rejection rate with γ1 = .14 and γ2 = .36.
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Major findings

In general, as expected by several researchers, the most com-
monly used SEM performed worse as cross-loadings increased, 
producing more biased structural path coefficient estimates 
and lower statistical power, which was substantially alleviated 
by enhanced sample sizes and target loadings. These findings 
are in line with the literature on the disadvantages of conven-
tional SEM in analyzing models with cross-loadings 
(Asparouhov & Muthén, 2009; Marsh et al., 2014; B. Muthén 
& Asparouhov, 2012). However, under conditions with large 
target loadings ðλT � :84Þ and medium-to-large sample sizes 
(N ≥ 200), the performance of SEM in estimating path coeffi-
cients is comparable to that of ESEM and BSEM. In this case, 
using SEM benefits the development of parsimonious instru-
ments (Asparouhov & Muthén, 2009).

Although both approaches were proposed to appropriately 
address cross-loadings, ESEM produced lower convergence 
rates as cross-loadings increased and rejected models more 
frequently than BSEM in most cases. It is worth noting that 
when the target loadings were small ðλT ¼ :55Þ, ESEM exhib-
ited large fluctuations in the estimation performance of path 
coefficients, reaching an extreme level of bias under some 
conditions. When target loadings were not small ðλT � :70Þ, 
the performance of ESEM in estimating path coefficients was 
substantially improved; however, it still provides unacceptable 
estimation accuracy in some conditions with large cross- 

loadings ðλC ¼ :30Þ, which was inferior to BSEM-(CL, .01). 
Xiao et al. (2019) found that BSEM outperformed ESEM when 
the prior means assigned to cross-loadings matched the true 
values. We infer that this conclusion can be generalized to the 
performance of ESEM in estimating structural models. Our 
findings are also consistent with previous findings by Liang 
et al. (2020).

Regarding BSEM, its performance in estimating structural 
regression parameters significantly depends on the accuracy of 
priors for cross-loadings in the present investigation, which is 
contrary to the conclusion of Liang et al. (2020) for BSEM with 
ordinal indicators. With a correctly specified prior mean and 
small prior variance, BSEM-(CL, .01) exhibited optimal per-
formance (e.g., optimal model convergence and rejection, 
higher statistical power) under most conditions. Specifically, 
BSEM-(CL, .01) outperformed other approaches in stably pro-
viding precise and accurate structural path estimates, despite 
increasing cross-loadings. In comparison, with zero-mean 
cross-loading priors, BSEM performs better than SEM and 
ESEM in medium target loadings and a relatively small sample 
size. As discussed in the study by Guo et al. (2019), under the 
framework of the factor analysis model, the performance of 
BSEM improves substantially when informative priors for 
cross-loadings are set close to the population values. Xiao 
et al. (2019) also pointed out that the cross-loading mean was 
more influential than the prior variance in the BSEM estima-
tion precision. Under the conditions considered in the present 

Figure 4. Relative bias of estimation (RBEST) of γ2 with γ1 = .14 and γ2 = .36.
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study, we find that the above-mentioned conclusions hold for 
the estimation of structural regression parameters, which is 
also in line with previous findings regarding the importance 
of prior accuracy (Van Erp et al., 2018; Zondervan- 
Zwijnenburg et al., 2017).

Recommended strategies for method selection

Based on the performance of conventional SEM, ESEM, and 
BSEM under different conditions of target loadings, cross- 
loadings, and sample sizes in this investigation, we recom-
mended the following strategies to select the appropriate mod-
eling approach in practice for the applied researchers’ 
consideration:

(1) Researchers are advised to gather prior information 
about target loadings and cross-loadings before choos-
ing a modeling approach because the performance of 
different approaches largely depends on the conditions 
of target loadings and cross-loadings in the model. 
Available strategies include existing empirical studies, 
meta-analyses, and pilot data. Researchers may also 
conduct preliminary analyses with conventional SEM 
and make subsequent methodological decisions based 

on the results. A larger sample size is also recommended 
because the performance of most approaches can be 
substantively improved as sample size increases.

(2) When there were no cross-loadings in the model or the 
target loadings were substantially large (e.g., λT = .95), 
the performances of conventional SEM, ESEM, and 
BSEM are relatively similar. In this case, SEM is recom-
mended to consider parsimony.

(3) If there is adequate information to specify appropriate 
priors for cross-loadings (e.g., well-supported evidence 
in the literature including meta-analyses, results of the 
pilot data), BSEM is recommended for its superior 
performance to other approaches. Specifically, if prior 
knowledge suggested that cross-loading was substantial, 
it might be more appropriate to specify a non-zero 
mean with small variance. However, it should be 
noted that it is difficult to guarantee the correctness of 
priors under the Bayesian framework, while existing 
studies including ours did not provide information 
regarding the impact of incorrect cross-loading priors. 
Researchers are advised to conduct prior sensitivity 
analyses and compare the results of different priors 
with caution.

(4) In the absence of adequate information on priors for 
cross-loadings, while target loadings are relatively large 
(e.g., λT ≥ .70), ESEM is recommended, provided the 

Figure 5. Relative bias for standard error (RBSE) of γ2 with γ1 = .14 and γ2 = .36. The values of RBSE under certain conditions exceed the depicting range of the y-axis, 
which are displayed in the supplemental material.
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Figure 6. MSE of γ2 with γ1 = .14 and γ2 = .36. The values of MSE under certain conditions exceed the depicting range of the y-axis, which are displayed in the 
supplemental material.

Figure 7. Statistical power of γ2 with γ1 = .14 and γ2 = .36.
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convergence problem does not occur, owing to its prac-
tical convenience and relatively stable performance in 
estimating path coefficients under most conditions. If 
researchers are interested in identifying cross-loadings, 
ESEM should be preferable, despite the comparable 
performance of SEM in estimating path coefficients, 
because analyzing cross-loadings in SEM relies on mod-
ification index and might lead to capitalizing on chance. 
However, ESEM should be avoided when the target 
loadings are small (e.g., λT = .55), owing to the possible 
extreme biases in estimating the path coefficients.

Limitations and future directions

There are some limitations to this study. First, the data in this 
simulation study was based on a normal distribution. Future 
research should further compare the performance of SEM, 
ESEM, and BSEM on non-normal data. Second, this investiga-
tion did not evaluate each approach’s performance under dif-
ferent levels of model complexity (e.g., the number of factors 
and number of indicators for each factor). Future studies 
should consider the impact of model complexity because it 
has been verified to influence model convergence and estima-
tion accuracy (Xiao et al., 2019). Third, this investigation solely 
considered ESEM with Geomin rotation. Further studies are 
required to compare the performance of SEM, BSEM, and 

ESEM with other rotation methods. For example, ESEM with 
target rotation and Geomin rotation exhibited different pat-
terns of performance in estimating the measurement models 
(Guo et al., 2019; Xiao et al., 2019). Fourth, the posterior 
predictive p (PPp) value was used to evaluate the model fit in 
BSEM in our study, considering implementation convenience 
in Mplus and the extensive use of PPp in previous BSEM 
studies. However, one of the reviewers suggested the prior- 
posterior predictive p value may provide more accurate model 
evaluation in the context of small-variance priors (Hoijtink & 
van de Schoot, 2018). Further studies are needed to evaluate the 
performance of the prior-posterior predictive p value in the 
BSEM framework. Finally, it is difficult to specify a perfectly 
correct BSEM in empirical applications. Zondervan- 
Zwijnenburg et al. (2017) provided strategies to specify priors 
based on existing knowledge. More work is required to inves-
tigate how we can obtain more accurate priors in the SEM 
framework. In addition, while existing studies including ours 
implicated the importance of cross-loading prior means, the 
impact of incorrect while non-zero prior means for cross- 
loadings on BSEM remains largely unknown. Future studies 
may also consider addressing this issue in the context of cross- 
loadings.
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