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Criteria for Parameter Identification in Bayesian Lasso Methods for Covariance 
Analysis: Comparing Rules for Thresholding, p-value, and Credible Interval
Lijin Zhang a, Junhao Pan a, and Edward Haksing Ip b

aSun Yat-sen University; bWake Forest School of Medicine

ABSTRACT
The lasso is a commonly used regularization method that is increasing used in structural equation models 
(SEMs). Under the Bayesian framework, lasso is rendered more flexible and readily produces estimates of 
standard errors and the penalty parameter. However, in practice, it remains unclear what decision rule is 
appropriate for parameter identification; in other words, determining what size estimate is large enough 
to be included into the model. The current study compared three decision rules for parameter identifica-
tion – thresholding, p-value, and credible interval in confirmatory factor analysis. Specifically, two distinct 
parameter spaces were studied: cross-loadings and residual correlations. Results showed that the thresh-
olding rule performed best in balancing power and Type I error rate. Different thresholds for standardized 
estimates were needed for different conditions. Guidelines for parameter identification and recom-
mended thresholding values were also provided. Results of the current study have the potential to extend 
to a broad range of SEMs.

KEYWORDS 
Confirmatory factor analysis; 
cross-loading; residual 
correlation; regularization

Introduction

Modern data analysis must often manage a large amount of 
data. When the number of variables is large and the sample size 
is insufficient, the problem of over-fitting occurs and leads to 
weakened model generalizability. To create a balance between 
model simplicity and model fit, regularization methods such as 
lasso (least absolute shrinkage and selection operator; 
Tibshirani, 1996) have been used in many fields and increas-
ingly in social sciences (Lindstrøm & Dahl, 2020). The idea 
behind lasso is to penalize models that are overly complex (i.e., 
that contain a large number of parameters) by using a more 
conservative criterion than traditional methods such as max-
imum likelihood or least square. To illustrate the principle of 
lasso, consider the following example for fitting a regression 
model with J predictors X to outcome data Y by minimizing the 
estimation function: 

LLasso βð Þ ¼ Y � Xβj jð Þ
2
þ λ

XJ

j¼1
βj

�
�
�

�
�
� (1) 

where β J � 1ð Þ indicates the vector of regression coefficients 
for the J predictors, and LLasso βð Þ and Y � Xβj jð Þ

2 represent the 
loss function of lasso regression and least square difference, 

respectively. The term 
PJ

j¼1
βj

�
�
�

�
�
� is the lasso penalty function that 

consists of the sum of absolute values of regression coefficients. 
The tuning parameter, λ � 0ð Þ, indicates the strength of the 
penalty. The addition of the penalty term to the least square 
criterion tends to result in simpler models that only include 
strong predictors.

Compared to models without a penalty function, models 
with lasso regularization have proved to have higher general-
izability (Yarkoni & Westfall, 2017). Compared with the ridge 
regularization method, which uses a quadratic penalty function 
ffiffiffiffiffiffiffiffiffiffiffi
PJ

j¼1
β2

j

s

and enforces less shrinkage strength on smaller coeffi-

cients, lasso has been found to perform better in variable 
selection (Hesterberg et al., 2008).

The Bayesian lasso version has been increasingly used in the 
social sciences (Brandt et al., 2018; Feng et al., 2017; Pan et al., 
2017), and this trend is expected to continue (McNeish, 2015) 
for several reasons. First, lasso can be readily applied in Bayesian 
analyses by using the double exponential priors (Park & Casella, 
2008). Second, with advances in Bayesian computational tools, 
such as the Gibbs sampler, the Bayesian lasso method can 
provide estimates of standard errors that are difficult to obtain 
under a frequentist framework (Kyung et al., 2010). Third, the 
tuning parameters, which are traditionally chosen based on 
computationally intensive methods, such as cross-validation 
method and multiple-model comparison, can be more conveni-
ently estimated with other coefficients simultaneously under the 
Bayesian lasso paradigm (Hans, 2009; Park & Casella, 2008).

Recently, novel methods that extend the lasso have been 
developed for structural equation modeling (SEM) and network 
analysis. Examples include the graphical lasso network models 
(Costantini et al., 2019), network analysis with an adaptive lasso 
method (Marcus et al., 2017), the Bayesian lasso confirmatory 
factor analysis (CFA; Chen et al., 2021; Pan et al., 2017), explora-
tory mediation analysis (Serang et al., 2017), the Bayesian adap-
tive lasso for ordinal regression with latent variables (Feng et al., 
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2017), and regularized multiple-indicators and multiple-causes 
(MIMIC) models (Jacobucci et al., 2019). An R-package regsem 
was also developed by Jacobucci et al. (2020) to conduct regular-
ized SEM. Lasso and adaptive lasso methods are available under 
the frequentist framework in regsem.

Although the application of lasso has sharply increased, 
decision rules for parameter identification (i.e., for determin-
ing whether a coefficient is non-zero and included in the 
model) tend to vary greatly across studies. At least three criteria 
for parameter identification – the thresholding rule, the p-value 
rule, and the credible interval rule – have been used in the 
literature. The lack of a standard for reporting of results for 
parameter identification creates confusion for result interpre-
tation and problems such as difficulty in comparing results 
across studies.

In this paper, we compare the three criteria for identifying 
parameter for inclusion into a model using the Bayesian lasso. 

Specifically, we focus on confirmatory factor analysis (CFA) 
and examine two parameter spaces that are amenable to reg-
ularization method: cross-loadings and residual correlations. 
To illustrate the research question, we use a data set regarding 
burnout in elementary school male teachers (N = 372) (Byrne, 
1994, 2012). Participants were asked to respond to the 22-item 
Maslach Burnout Inventory (MBI; Maslach & Jackson, 1981, 
1986). The MBI used a 7-point Likert scale (0 = feeling has 
never been experienced, 6 = feeling experienced daily) and 
includes three dimensions of burnout. Figure 1a shows the 
factor structure specified in original articles. While it is unlikely 
that each item is only loaded on one factor, as specified a priori, 
it is also unlikely that all items significantly load on all factors. 
In other words, we expect sparsity in the cross-loading pattern, 
which contains a total of 44 possible cross-factor loading.

By applying the Bayesian lasso to the data, we obtained 
estimates for all cross-loadings. Figure 1b shows the results of 

Figure 1. Measurement model of the Maslach Burnout Inventory. Figure 1a: Three dimensions of the Maslach Burnout Inventory. Figure 1b: Results of the Bayesian Lasso 
CFA. Black solid line: main loadings, black dotted line: cross-loadings identified by all three criteria, blue dotted line: cross-loadings identified by threshold and p-value, 
orange dotted line: cross-loadings identified only by threshold.
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applying the three parameter identification criteria – threshold 
0.1, p-value and 95% highest posterior density (HPD) interval – 
to the estimated values. Although there is some agreement of 
identified cross-loadings among the criteria, the numbers of 
identified significant cross-loadings were different – i.e., 11, 6, 
and 4 cross-loadings were, respectively, identified. Without 
knowing the true loading values, it is not possible to tell 
which method works best.

In this paper, our goal is to evaluate, through extensive 
simulation experiments, the performance of the three criteria 
under different conditions. We apply the Bayesian lasso to 
regularize both cross-loadings or residual correlations (both 
within- and across-factor). Based on the results of the evalua-
tion, we provide further recommendations on the decision 
rules for using the Bayesian lasso CFA.

The reminder of the paper is organized as follows. First, we 
provide background for the Bayesian lasso for CFA and the 
three criteria and decision rules for parameter identification. 
We next describe the design for the simulation study. Results 
are reported by two sets of parameters – cross-loading and 
residual correlation, and three metrics – power, Type I error, 
and percentage of correct identification. Finally, we provide 
a discussion of the findings.

Bayesian lasso confirmatory factor analysis

The Bayesian lasso method has been used in CFA to detect 
possible cross-loadings of indicators (Chen et al., 2021) as well 
as to identify non-zero residual covariances (Pan et al., 2017). 
Suppose there are J items and N participants, the CFA is 
specified as follows: 

yi ¼ μþ Λωi þ εi; i ¼ 1; 2; . . . ;N (2) 

where yi (J � 1) represents the observed values of J items for 
the i-th participant. The vector μ represents the intercept, and 
Λ represents the loading matrix that encode the relationship 
between observed variables in yi and latent variables in ωi. The 
error term εi, which follows N [0, Ψε], represents residuals of 
observed variables. In traditional CFA models, the following 
two assumptions are made: (1) the structure of loadings matrix 
is specified a priori according to substantive theory such that 
each item is loaded on one and only one latent factor, and (2) 
the residual variance-covariance matrix Ψε is diagonal. In other 
words, all cross-loadings and residual covariances are assumed 
to be zero. These two assumptions are rather restrictive and not 
likely to be entirely satisfied in real-world applications. If non- 
zero parameters exist and are not identified and properly 
handled, it could result in an inferior model fit (Muthén & 
Asparouhov, 2012), and the structural estimate could be 
biased. For example, Brandt et al. (2020) found that even 
missing a single cross-loading can cause an unacceptably 
large bias of interaction effect. Similarly, it has been shown 
that correctly identified non-zero residual covariances lead to 
improved precision in the estimates of structural parameters 
(Pan et al., 2017).

Under the Bayesian framework, the strict assumptions of no 
cross-loading and zero residual covariance are relaxed through 
the assignment of priors to the corresponding parameters. 

Specifically, the Bayesian lasso assigns double exponential 
priors to the parameter, thus allowing cross-loadings and resi-
dual covariances to fluctuate around zero. The Bayesian lasso 
method simultaneously identifies non-negligible cross- 
loadings and/or residual covariances in a joint estimation 
procedure.

Because regularization methods work by shrinking many 
small parameters toward zero and only retain significantly 
large non-zero entries, the technique is especially useful when 
one expects the parameter space to be sparse (e.g., when only 
a few non-zero cross-loadings exist). Note that subsequent to 
using the Bayesian lasso or another regularized method, it is 
quite common to reanalyze the data with the identified freed 
(non-zero) parameters without regularization (Muthén & 
Asparouhov, 2013; Serang & Jacobucci, 2020; Serang et al., 
2017).

The identification of “significantly large” non-zero entries 
require careful operationalization. While the Bayesian lasso 
can produce probabilistic measures such as a credible interval 
or p-value as evidence of a non-zero parameter value, a user is 
still required to determine whether a parameter should be 
included into the model, a process we call “parameter identifica-
tion.” The process sets parameters that are deemed small to zero.

Different ways of parameter identification with the lasso 
method

In general, there are three common ways of parameter identi-
fication in lasso: (1) the thresholding rule; (2) the p-value rule; 
and (3) the credible interval rule.

When standard error is not available or difficult to derive 
(e.g., in a frequentist estimation), it is common to apply 
a simple thresholding rule to the (absolute) value of the esti-
mated parameter for parameter identification. Apparently, an 
intuitive cutoff value is zero or a small value. In a frequentist 
setting, Serang et al. (2017) compared lasso with the zero- 
thresholding rule and other p-value based methods (such as 
multivariate delta method) in an exploratory mediation analy-
sis. Results showed that lasso outperformed p-value-based 
methods in correctly identifying the mediators. Liang and 
Jacobucci (2019) also chose zero as the threshold in detecting 
measurement bias in maximum likelihood estimation. Yuan 
and Liu (2020) adopted the same threshold to select loadings in 
CFA and found that lasso did not perform well under this 
situation. Unlike the other studies, Serang and Jacobucci 
(2020) chose 0.001 instead of 0 as threshold when selecting 
mediators to exclude the negligible effect.

Although the zero thresholding rule has been widely used in 
the frequentist Lasso, it is not feasible in the Bayesian Lasso. In 
frequentist Lasso, parameters are viewed has a fixed value and 
can be shrunken exactly to zero. On the other hand, in the 
Bayesian Lasso, parameters are random variables with distribu-
tions and cannot be shrunken to zero. Within the Bayesian 
estimation, some researchers have opted to use the cutoff of 0.1 
( βj j> 0:1). This cutoff value is especially popular with the 
Bayesian lasso method (Feng et al., 2017; Guo et al., 2012; Hoti 
& Sillanpää, 2006; Peterson et al., 2014). The cutoff value can also 
be justified from a substantive standpoint. Muthén and 
Asparouhov (2012) suggested that cross-loading of less than 
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0.1 can be considered to have little practical importance. Cohen 
(1988) also pointed out that the correlation coefficient as 0.1 is 
a typical value of low-effect size. Although substantively the 
cutoff value of 0.1 seems reasonable, the criterion may not 
have sufficient power to detect truly non-zero parameters. This 
is due partly to the shrinkage effect of regularization methods – 
that is, it tends to deflate parameters in achieving a high degree 
of parsimony.

In frequentist lasso applications when the standard error is 

available, the p-value (with cutoff at 0.05) is the conventional 
standard for parameter identification. For lasso regression, the 
p-value can be obtained using the R-package covTest (Lockhart 
et al., 2014). For the Bayesian lasso method, it is relatively straight-
forward to obtain p-values. Additionally, credible intervals such as 
the HPD interval can also be calculated using Markov Chain 
Monte Carlo (MCMC; Gilks et al., 1996) algorithms. In network 
analysis, Epskamp et al. (2018) demonstrated how frequentist- 
lasso regularization can provide confidence intervals using 
a bootstrap method. The authors further argued that because the 
distribution of Lasso regularized parameters is far from normal 
(Pötscher & Leeb, 2009), thus using the bootstrapped confidence 
interval is more appropriate than using the p-value.

When applying lasso to SEM, multiple testing of parameter 
significance is common. There does not appear to be consensus 
as to whether the α level should be corrected. Epskamp et al. 
(2018) pointed out the α level would be corrected to 0.000003 
even with a small 20-node network if the Bonferroni correction 
is used. Such stringent criterion is not practical and thus not 
recommended by the authors. Pan et al. (2017) adopted the 
nominal α level at 0.05 when calculating the HPD intervals of 
residual covariances and demonstrated that a 95% HPD 

interval could maintain low Type I error rates. In this paper, 
the nominal α level at 0.05 is used throughout.

Simulation study

The Monte Carlo simulation study was conducted to investi-
gate the performance of three criteria – thresholding, p-value, 
and credible interval – as well as their associated decision rules 
for detecting significant cross-loading/residual correlation 
under a range of experimental conditions. For each condition, 
100 replications were generated and each sample was analyzed 
by Bayesian lasso CFA.

Method

Data generation
The following factors were selected as conditions for the Monte 
Carlo study for cross-loading: sample size (3 levels), model size 
(2 levels), and the magnitude of cross-loading (4 levels). Similar 
conditions were used for residual correlations (Table 1). As 
such, we had a total of 3� 2� 4 ¼ 24 conditions for each set 
of parameters or a total of 48 conditions for cross-loading and 
residual correlation. For model size, two measurement models 
of different number of factors were considered: a two-factor 
model with five items per factor and a three-factor model with 

Table 1. Design of simulation study.

Factors Conditions

Sample Size 200, 500, 1000
Model Size 2 factors and 10 items, 3 factors and 18 items
Effect Size of Parameters 0, 0.1, 0.2, 0.3 for cross-loadings 

0, 0.1, 0.3, 0.7 for residual correlations

Figure 2. Measurement models in the simulation study. Figure 2a: measurement model with 2 factors and 10 items, Figure2 b: measurement model with 3 factors and 
18 items. Dotted line with single arrow: cross-loadings, dotted line with double arrow: residual co-variances, solid line with single arrow: main loadings and residual 
variances, solid line with double arrow: factor co-variances.
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six items per factor (Figure 2). These model sizes were com-
monly used in previous empirical and simulation studies 
(Chen et al., 2021; Khong et al., 2013; Muthén & 
Asparouhov, 2012). The variances of factors and items were 
set at one and the main loadings were set at 0.7.

Apart from the conditions of zero cross-loading and residual 
correlation, we considered three levels of non-zero effect size. 
Denote the factor loading between item a and factor b λa;b. 
Following Lu et al. (2016) and Muthén and Asparouhov 
(2012), two or 20% cross-loadings (λ6;1; λ5;2) in the two-factor 
model, and six or 16.67% cross-loadings (λ7;1; λ18;1; λ6;2;

λ13;2; λ1;3; λ12;3) in the three-factor model (Figure 2) were set at 
values of 0.1, 0.2 or 0.3. Similarly, 2 or 3.64% out of 55 
( ¼ C 10; 2ð Þ) off-diagonal elements in the residual variance- 
covariance matrix were non-zero in the two-factor model. Six 
or 3.51% out of 171 ( ¼ C 18; 2ð Þ) residual covariances were non- 
zero in the three-factor model. The residual correlations were set 
at 0.1, 0.3 or 0.7 to represent, low, medium, and high correlation 
(Muthén & Asparouhov, 2012; Pan et al., 2017).

To avoid the possible confounding effect between non-trivial 
cross-loadings and residual correlations, the conditions of non- 
zero cross-loadings and non-zero residual correlations were 
separately analyzed. In other words, when the purpose was to 
detect significant cross-loadings, the non-diagonal parameters of 
residual variance-covariance matrix were set to zero in both data 
generation and model estimation and vice versa.

Model estimation
The specific models used for the simulation studies were: (1) 
M1: model with some non-zero cross-loadings and diagonal 
residual covariance matrix, and (2) M2: model with some non- 
zero, off-diagonal residual covariance entries but no cross- 
loading.

Using the MCMC algorithm, the posterior distribution of 
parameters can be estimated based on the specified priors and 
the data. Suppose there are J items and K factors for the 
confirmatory factor analysis, the priors for the Bayesian lasso 
confirmatory factor analysis are issued as follows: 

μ,N μ0;Hμ0Þ;Φ� 1,WishartðR0; ρ0Þ
�

(3) 

For M1, the loadings for the j-th item Λj ¼
Λm

j
Λc

j

� �

, where Λm
j 

and Λc
j , respectively represent the component of the loading on 

the designated factor and the component of cross-loading. The 
hierarchical priors for loadings are specified by:

Λm
j ,N Λ0j;H0j

� �
;Λc

j jψjj,N 0;ψjjDτj

� �
;

ψ� 1
jj ,Gamma a0j; b0j

� �
;Dτj ¼ diag τ2

j1; . . . ; τ2
jk

� �
,

τ2
jk ,Gamma 1;

δ2

2

� �

; δ2,Gamma alj; blj
� �

(4) 

For M2, the prior for the loadings is Λj,N Λ0j;H0j
� �

. 
Following Khondker et al. (2013) and Wang (2012), graphical 
lasso priors are specified for the inverse of the residual var-
iance-covariance matrix Ψε: 

Ψε
� 1 ¼ Σ ¼ σjj0

� �

J�J (5) 

where independent exponential priors ( λ
2 exp � λ

2 σjj
� �

) and the 
double exponential priors ( λ

2 exp � λ σjj0
�
�
�
�

� �
; j< j0 are assigned 

for the diagonal and the off-diagonal elements of Ψε
� 1, respec-

tively. Moreover, λ,Gamma aλ0; bλ0ð Þ where aλ0 ¼ 1 and bλ0 
set at a small value.

For sensitivity analysis, we adopted three sets of values for 
hyperparameters μ0;Hμ0;R0;ρ0;Λ0j;H0j; a0j; b0j; alj; blj; aλ0; bλ0 
(Table 2).

The factor variances were set at 1.0 for model identification, 
and the MCMC algorithms proposed by Liu (2008) and Liu 
and Daniels (2006) was used to estimate the factor correlation 
matrix. Other parameters were estimated using the Gibbs sam-
pler (Geman & Geman, 1984). We conducted several test runs 
to select the number of MCMC iterations and found that the 
algorithm converged in less than 8,000 iterations as judged by 
the value of the estimated potential-scale reduction (EPSR) 
values (<1.2; Gelman, 1996). Based on the result from the test 
runs, all final estimates were obtained using 10,000 draws from 
the posterior distributions after a burn-in phase of 10,000 
iterations. Data generation and estimation used R 3.5.3 (R 
Core Team, 2020).

Parameter identification
The following criteria for parameter identification were used in 
the current study:

(1) Thresholds of magnitude 0, 0.05, 0.1, and 0.15 with the 
decision rule to include if the absolute value of the para-
meter estimate is larger than the cutoff. The thresholding 
rule applies to the estimates of residual correlations and 
standardized cross-loadings.

(2) A p-value with α ¼ 0:05, with the decision rule to 
include if p < .05. The p-value can be different 
from the frequentist p-value, it is one-tailed and 
is based on MCMC samples rather than the z-test.1 

It has been used in the Bayesian analysis with 
Mplus software. As defined by Muthén (2010), the 
p-value is the proportion of the negative/positive 
posterior samples for or a positive/negative esti-
mate, respectively.

(3) A 95% HPD interval, with the decision rule to include if 
the point 0.0 is outside the 95% HPD interval.

Table 2. Three sets of values for hyperparameters.

Set μ0 Hμ0 R0 ρ0 Λ0j H0j a0j b0j alj blj aλ0 bλ0

1 0 4I I + 0.1 K + 2 0 4I 1 0.01 1 0.01 1 0.01
2 0 4I I + 0.5 K + 8 0 I 1 0.1 1 0.1 1 0.1
3 0 100I I K + 2 0 100I 1 0.01 1 0.01 1 0.01

I: identity matrix, I + 0.1: diagonal elements = 1 and non-diagonal elements = 0.1, I + 0.5: 
diagonal elements = 1 and non-diagonal elements = 0.5, K: number of factors.

1We also checked the performance of the z-test, and results were similar to but slightly worse than the 95% HPD interval. Results based on the z-test are not reported in 
the current paper. Note that the worse performance of z-test may be due to the non-normal property of Lasso regularized parameters (Pötscher & Leeb, 2009).
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Note that for the thresholding criterion, the values of 0.1 were 
commonly used in previous Bayesian studies. We include the 
zero thresholding rule, which is commonly used in frequentist 
Lasso in this work and show that it is equivalent to no thresh-
olding under the Bayesian framework. Here we also included 
two additional cutoff values of 0.05 and 0.15 to fully investigate 
the effect of different thresholds.

Evaluation criteria
Three metrics were considered for a performance comparison 
of the decision rules:

(1) Power: the probability of correctly identifying the 
cross-loadings/residual correlations when the para-
meters are non-zero (Muthén & Asparouhov, 2012). 
Acceptable power is above 80% (L. K. Muthén & 
Muthén, 2002).

(2) Type-I error rates: the probability of erroneously iden-
tifying the cross-loadings/residual correlations when 
the parameters are zero. The acceptable Type I error 
rate is within the 95% confidence interval of a 
binomial distribution [0.007, 0.093]  

½0:05�1:96�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:05�ð1 � 0:05Þ =nrep

q

; Cham et al., 

2012), where nrep is the number of replications.

(3) The ratio of correct identification to the total number of 
identified parameters (Yuan & Liu, 2020): There is no 
established criterion for this metric.

We focus on these three metrics in the current paper, the 
estimation results of Bayesian Lasso CFA were reported in the 
supplementary materials. The results of these metrics were 
similar in three sets of hyperparameters, the results of the 
first set of hyperparameters were reported in the paper and 
the others were also shown in the supplementary materials.

Results

Power

Figure 3 shows the performance of the three criteria for deci-
sion rules on power. Compared to the other two rules, the HPD 
interval rule performed worst in detecting non-zero cross- 
loadings when the sample size was small or when the target 
was within-factor residual correlations. For example, even 
when the sample size was 1,000 and the residual correlations 
were 0.7, the power of the 95% HPD interval rule in detecting 
within-factor residual correlations in the two-factor model was 
close to zero. The performance of the p-value decision rule was 
better than HPD interval rule in detecting cross-loadings and 
between-factor residual correlations, but was worse than the 
thresholding rule with threshold values of 0.05 and 0.1. 
However, the p-value rule had similar power problems as the 
HPD interval rule. For example, in the two-factor model, the 
p-value rule did not have sufficient power even when the 
sample size was 1,000 and the residual correlation was 0.3.

As expected, the zero-threshold produced 100% power in all 
the conditions. Under most conditions, power was maintained 
at approximately 80% by increasing the threshold to 0.05. The 
cutoff value of 0.1 only produced acceptable power when the 
estimated value was larger than 0.1. We also found that the 
power was higher for residual correlations than for cross- 
loadings with the same threshold and the same level of actual 
parameter values (0.1, 0.3). The threshold of 0.15 was accep-
table in power for residual correlations but not for cross- 
loadings.

Additionally, we found an increasing sample size significantly 
improved the performance of the HPD interval and the p-value 
decision rules. However, the increasing sample size only led to 
a small improvement in the performance of the thresholding 
rules in general. Moreover, except for sample size, the perfor-
mance of the HPD interval was sensitive to model size, especially 
when detecting within-factor residual correlations.

Figure 3. Power. Note: Sample size: 200, 500, and 1000. True value: 0.1, 0.2 and 0.3 for cross-loadings and 0.1, 0.3, 0.7 for residual correlations. Methods: methods of 
variable selection, thresholds include 0, 0.05, 0.1, and 0.15, HPD: 95% highest posterior density interval. Residual cor (with): within-factor residual correlations. residual 
cor (bet): between-factor residual correlations. The horizontal red dotted line indicates the threshold of acceptable power (0.8).
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Type I error rate
Figure 4 displays the performance of the three criteria for 
decision rules on Type I error rate. The general pattern 
was almost a mirror image of that of power. For example, 
the HPD interval rule produced the lowest Type I error 
rate and outperformed the thresholding rule in most con-
ditions. The p-value rule also maintained the Type I error 
rate well in all the conditions. For the thresholding rule, 
Type I error rates were higher for residual correlations 
than for cross-loadings. As expected, the Type I error 
rate decreased with increasing cutoff value. The 0.05 cutoff 
produced Type I error rates higher than 0.093 for cross- 
loadings in some conditions and for residual correlations 
in almost all conditions. The cutoff of 0.1 maintained Type 
I error rates well at the nominal level for cross-loadings. 
However, for residual correlations conditions, the 0.1 cutoff 

produced high Type I error rates (>0.3 in some condi-
tions). Using the 0.15 cutoff value instead significantly 
improved performance.

Although the abovementioned results suggest using the 
thresholding rule at the 0.1 and 0.15 cutoffs, respectively, 
for cross-loading and residual correlation for maintaining 
the Type I error, using a lower cutoff may be appropriate 
for other purposes, such as exploring factor and residual 
covariance structures (Jacobucci et al., 2019; Serang et al., 
2017). In the case in which power is emphasized, the two 
respective thresholds (0.05 for cross-loading and 0.1 for 
residual correlation) are favored. Results showed that for 
parameters with a true value of 0.1 or higher, these thresh-
olds provided high power for detection than the 0.1-thresh-
old for loadings and the 0.15-threshold for residual 
correlations (Figure 3).

Figure 4. Type I error rates. Note: Type I error rates for zero cross-loadings and residual correlations under different modeling conditions: (1) Sample size: 200, 500, and 
1000; (2) True value: 0 for all the cross-loadings and residual correlations, 0.1, 0.2, 0.3 for the pre-assigned non-zero cross-loadings, and 0.1, 0.3, 0.7 for non-zero residual 
correlations; (3) Methods: methods of variable selection, thresholds include 0, 0.05, 0.1, and 0.15, HPD: 95% highest posterior density interval. The two horizontal red 
lines indicate the bounds of acceptable Type I error rate (0.007–0.093).

Figure 5. Ratio of correct Identification. Note: Sample size: 200, 500, and 1000. True value: 0.1, 0.2 and 0.3 for cross-loadings and 0.1, 0.3, 0.7 for residual correlations. 
Methods: methods of variable selection, thresholds include 0, 0.05, 0.1, and 0.15, HPD: 95% highest posterior density interval. If a line is missing, it indicates that no 
cross-loading/residual correlation was identified by the method in that condition.
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The ratio of correct identification
Figure 5 summarizes the results for the metric in the correct 
identification ratio. The ratio increased with an increasing 
sample and decreasing Type I error rate (Figure 5). The metric 
was higher for cross-loadings compared to residual correla-
tions, which was partly caused by the relatively large propor-
tion of zero residual correlations in the generative models.

Results showed the more conservative the rule, the higher 
the ratio of correct identification. The most conservative rule – 
a 95% HPD interval – performed best in terms of this metric in 
most conditions. The p-value rule also performed better than 
the thresholding rule for detecting within-factor residual cor-
relations. Cutoff at zero performed worst, followed by the 0.05 
cutoff. For correctly identifying cross-loading, cutoff values of 
0.1 and 0.15 performed the best, and their performances were 
similar. The 0.15 cutoff outperformed the 0.1 cutoff in detect-
ing residual correlations.

Discussion

The current study offers a comprehensive comparison between the 
thresholding rule, the p-value rule, and the HPD interval rule in 
parameter identification within the context of the Bayesian lasso 
CFA. In general, we found no universally superior criterion or 
decision rule. For example, criteria based on thresholding rules 
with cutoff value >0 showed a more robust performance than the 
HPD interval in balancing power and Type I error rate. However, 
the thresholding rules did not perform well in terms of percentage of 
correct identification. As different criteria suit different purposes 
(e.g., for exploratory purposes power is more important, whereas for 
formal hypothesis testing, Type I error rate is more important), we 
cannot recommend universal simple rules-of-thumb for parameter 
identification. Instead, we summarize our recommendations for 
which criterion to consider in a table that separates out major 
circumstances – metric to consider, sample size, and model para-
meter type (Table 3).

In general, power and Type I error rates for rules using thresh-
olding criteria were higher for residual correlations than for cross- 
loadings. For cross-loading, the threshold of 0.1, which has been 
commonly used by previous studies (Feng et al., 2017; Guo et al., 
2012; Hoti & Sillanpää, 2006; Peterson et al., 2014) provides a good 
balance – i.e., sufficient power and acceptable Type I error rates. The 
cutoff of 0.1, however, produced unacceptably high Type I error 
rates for residual correlations; as such, the cutoff value of 0.15 is 
instead recommended.

The current study identified cross-loadings and residual correla-
tions separately to avoid possible-confounding effects. However, the 

co-existence of cross-loadings and residual correlations may be 
expected in practice. We further conducted a small simulation 
study to preliminarily explore the performance of different criteria 
in detecting these two kinds of parameters simultaneously. Results 
were rather similar to the current study. We highlight key findings 
and include details in Supplementary Materials. For detecting the 
two kinds of parameters simultaneously, the phenomenon of low 
power of p-value and HPD interval methods was still present for 
within-factor residual correlations. Compared to performance 
when only one kind of parameter was present, we found the HPD 
interval and p-value methods were more sensitive to model size and 
provided lower power. Thus, we do not recommend to use p-value 
for detecting cross-loadings with small and medium sample size 
(N < 500). With small sample size, we recommend the use of the 
thresholding rule with different threshold values for different 
parameters.

Usage of the thresholding rule

The findings in this paper are based on the context of relaxed 
CFA assumptions and the Bayesian lasso tool for estimating the 
relaxed model. In the broader context of SEM, relaxing similar 
constraints using regularized methods has become an emerging 
and important trend (Jacobucci & Grimm, 2018; Lu et al., 2016; 
Muthén & Asparouhov, 2012). The 0.1 cutoff value, which we 
recommend for detecting cross-loading, can be a candidate for 
application to parameter identification for path coefficients in 
SEM, given the similar roles of path coefficient and factor load-
ing as regression parameters. The simple 0.1 cutoff rule, pending 
further investigation, could be especially useful in helping 
researchers to specify complex structural models in which causal 
relationships are difficult to fully delineate from theoretical 
consideration. On the other hand, some SEM applications 
require conditional correlations to be properly modeled for 
improving model fit. For example, in a SEM with two time 
points, the same indicator variables of the same latent factor 
across the time points may be modeled as correlated. From the 
results in this paper, we conjecture that using a cutoff of 0.15 for 
such correlation would be appropriate if the Bayesian lasso 
model is adopted. As a caveat, the current study did find that 
the 0.1 and 0.15 cutoffs (respectively for cross-loading and 
residual correlation) were unable to provide sufficient power in 
some cases when the true value of the parameter is 0.1, although 
power is acceptable when the true value of the parameter is >0.1. 
In situations in which path coefficients (standardized) and cor-
relations less than 0.1 are not deemed meaningful, the respective 
cutoffs at 0.1 and 0.15 represent reasonable choices. Our recom-
mendation can serve as a preliminary guideline for future 

Table 3. Summary of recommendations.

Sample Size Parameters

Threshold 0.1 Threshold 0.15 HPD Interval p-value

Power Type I Power Type I Power Type I Power Type I

200 Cross-loadingsa × √ × √ × √ × √
Residual correlations √ × √ √ × √ × √

500 Cross-loadings √ √ × √ √ √ √ √
Residual correlations √ √ √ √ × √ × √

1000 Cross-loadings √ √ √ √ √ √ √ √
Residual correlations √ √ √ √ × √ × √

Type I: Type I Error Rate; √: acceptable in most conditions, ×: unacceptable in many conditions, shaded: the best criterion in the corresponding condition. 
aNone of the criteria can provide sufficient power under this condition.
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investigation into the use of simple thresholding rules for 
broader use in SEM.

For exploratory analysis in SEM in which the purpose is to 
extract as many potentially important relationships as possible, 
the cutoff value can be lowered; we suggest using 0.05 for path 
coefficients and 0.1 for correlations. Further study is needed to 
fully assess the performance of these rules for exploratory SEM.

Limitations and future research

The current study has limitations. The number of factors investi-
gated in the simulation study is relatively small, and the method is 
limited to the Bayesian lasso. For example, our simulation results 
show that the power of the HPD interval method in detecting 
within-factor residual correlations increases with the number of 
factors. However, the model sizes considered were limited. More 
work is needed to evaluate the performance of the HPD interval 
under various model sizes. Future studies should also investigate the 
criteria performance and decision rules in a broader setting, includ-
ing CFA with a larger number of factors, as well as other extensions 
of the lasso method such as the adaptive lasso (Zou, 2006).

As pointed out by one of the reviewers, variable selection uncer-
tainties are not considered in the commonly used two-step 
approach in Bayesian Lasso CFA. Lu et al. (2016) proposed 
a solution using a spike-and-slab prior (SSP). More work is needed 
to evaluate the performance of SSP in parameter identification 
especially with the three methods analyzed in the current paper.

Concluding remarks

In summary, the current paper provides guidelines on the use of 
different decision rules for parameter identification in a CFA when 
the Bayesian lasso method is applied. The guidelines are based on 
a comparison of several commonly used criteria. As pointed out by 
Hindman (2015), regularized approaches have proven to outper-
form traditional methods, and methods such as penalized regression 
(e.g., the Bayesian lasso) should be more widely applied for theory 
building and hypothesis testing in social sciences. The current study 
represents an important contribution that facilitates such 
application.
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