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ABSTRACT
In confirmatory factor analysis (CFA), post hoc model modification (PMM) indexes are often used to adjust 
for possible residual correlations between items. Although the approach is useful for improving model 
goodness-of-fit, it requires an iterative, one-item-pair-at-a-time procedure that can be tedious and prone 
to error. This paper provides a didactic discussion in the form of a tutorial of a more efficient and practical 
alternative and its implementation using an R-based package. The tutorial contains (1) the Bayesian 
covariance Lasso (least absolute shrinkage and selection operator) approach as an alternative to the PMM 
method, and (2) the R package blcfa, which implements the Bayesian covariance lasso and directly 
interfaces with Mplus. It adopts a two-step approach by first estimating the entire residual covariance 
matrix, and then identifying the nonzero entries and seamlessly feeding them into Mplus. Two examples 
were used to illustrate package implementation.
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Confirmatory factor analysis (CFA) is one of the most widely 
used tools in psychology and social sciences for investigating 
theory-driven relationships between observed indicators and 
latent factors. Unlike an exploratory factor analysis (EFA), the 
number of latent factors and factor structure are assumed to 
be specified a priori in a CFA model. Specifically, in 
a traditional CFA, the cross-loadings and residual covariances 
between observed indicators (items) are fixed exactly at zero 
to reflect the parsimoniously non-overlapping factor struc-
ture, and conditional independence between item pairs is 
assumed given factor; see Figure 1(a) for an example of a two- 
factor model. The latter assumption implies that the covar-
iance matrix is diagonal. However, these settings are often too 
strict to be satisfied in real applications and could thus lead to 
overly rejecting a correctly specified CFA model. In practice, 
the post hoc model modification (PMM) approach has been 
used to relax the strict assumption. An important goal of 
PMM is to free up some residual covariance parameters 
(e.g., Figure 1(b)) to achieve better goodness of fit. 
Operationally, the PMM first uses modification indexes 
(MIs; Sörbom, 1989) to indicate possible non-zero elements 
in off-diagonal entries in a residual covariance matrix. For 
example, in Mplus (Muthén & Muthén, 1998–2017), a list of 
candidate item pairs and their corresponding MIs would be 
reported for modification consideration. Based on the diag-
nostic report, a user identifies an item pair to include in the 
model to free the corresponding (off-diagonal) residual cov-
ariance parameter. The user can then rerun and examine the 
updated model to determine if another item pair needs to be 
included, and if so, which pair should be included. The one- 
item-pair-at-a-time procedure is necessary because by mod-
ifying one residual covariance, the resulting model would 
generate a different set of MIs. For example, residual 

covariances for item pairs (1,6) and (2,3) are both significant, 
but after including (1,6) into the model (2,3) becomes not 
significant and (2,7) becomes significant. In other words, the 
PMM requires a user to sequentially tweak the residual cov-
ariance matrix one entry at a time in order to determine the 
next specific residual covariance parameters for inclusion in 
the modified model, refit the model, use the new set of MIs to 
determine the next residual covariance entry for inclusion, 
and so on. Such a sequential procedure, which has to be 
manually conducted, becomes tedious when the number of 
significant residual covariances is more than a few. The pro-
cess is also subjected to the user’s own decision of when to 
stop. Additionally, no guarantee exists that the modified cov-
ariance matrix is always positive definite and therefore 
a convergence problem can arise.

As an alternative to post hoc model modification (PMM), 
Pan et al. (2017) proposed the Bayesian covariance Lasso (least 
absolute shrinkage and selection operator) approach to the 
PMM. The Lasso-based approach avoids the ad-hoc sequential 
modification based on MIs and estimates a positive definite 
and sparse residual covariance structure of the observed indi-
cators. That is, under the Bayesian covariance Lasso CFA 
(BLCFA) framework, the residual covariances that bounded 
away from zero will be simultaneously detected. The result can 
then be used in at least the following two ways. First, by 
efficiently identifying the collection of residual covariance 
parameters, a one-step modification is possible for improving 
the overall goodness of fit. Second, by using the simultaneous 
examination of residual covariances in a joint CFA model as 
a diagnostic tool, a user can determine if other forms of 
modification are necessary (e.g., deletion of certain domain- 
specific items based on cross-factor residual covariance or 
a modification of factor structure).
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Although the R codes for implementing a BLCFA were 
published in Pan et al. (2017), applied researchers must still 
take multiple steps in obtaining the necessary modified CFA. 
For example, the user has to examine the covariance matrix, 
identify the nonzero entries to retain, modify the matrix, and 
apply existing software to obtain the fitted model and related 
goodness-of-fit indexes. The problem becomes even more 
complicated in the case of a CFA model that needs further 
changes when diagnostic information is available (e.g., item 
deletion, factorial structure change, and so forth).

In this paper we describe the R package blcfa, which imple-
ments a two-step method by (1) applying the BLCFA to a data 
set in standard data format (e.g., as required by Mplus) and 
identifies nonzero (off-diagonal) entries in the residual covar-
iance matrix, and by (2) seamlessly integrating the BLCFA result 
with Mplus software and deriving the necessary modified CFA 
result for the end user. In this two-step method, the user is also 
provided the option of directly examining the significant resi-
dual covariances detected after step (1) and makes changes to 
the generated Mplus codes to select the desired covariance to 
modify. The package output includes model fit indexes and 
parameter estimates for the CFA with updated residual covar-
iance parameters as typically reported in an Mplus output file. 
Accordingly, the program will greatly improve CFA analysis 
efficiency for applied researchers with a working knowledge of 
Mplus. For example, an end user can run blcfa and accept the 
result from the program. Alternatively, the end user can examine 
the required modified entries of the covariance matrix as diag-
nostic information and determine if item deletion is necessary. If 
revision is needed, the revised specification can also be imple-
mented using blcfa and without switching between programs.

In this paper, we explain the basic principles of BLCFA and 
provide a step-by-step tutorial of how blcfa can be used to 
assess residual covariances and integrate nonzero entries with 
Mplus to generate output. Both simulated data and real data are 
used for the illustration.

The Bayesian covariance Lasso CFA model

To explain BLCFA, we start with the standard CFA. 
Consider a collection of p-variate random response 
yi ¼ ðyi1; yi2; � � � ; yipÞ

T
ði ¼ 1; 2; � � � ; nÞ: 

yi ¼ μþ Λωi þ εi; i ¼ 1; 2; . . . ; n; (1) 

where μ ðp� 1Þ is vector of intercepts, and Λ ðp� qÞ is 
a factor-loading matrix that reflects the relation of observed 
indicators in yi with the latent factors in ω i ðq� 1Þ. Moreover, 
it is assumed that ω i follows N½0; Φ �, and εi ðp� 1) is 
a random vector of measurement errors that follows 
N½0; Ψ �. Following the Bayesian modeling approach of Pan 
et al. (2017), the number of latent factors and the structure of 
Λ are specified a priori, the variance-covariance matrix Ψ is 

not necessarily diagonal, and the unknown parameters in the 
model follow specific prior distributions. The last two points 
are where the BLCFA differs from traditional CFA.

Relaxing the diagonality assumption in the covariance 
matrix can lead to a substantial increase in the number of 
model parameters. For example, in a 30-item data set, there 
are 435 unique off-diagonal parameters, which does not expect 
to be all non-zero. A commonly used approach to maintain 
model parsimoniousness is to use regularization. Within the 

Figure 1. Model structure in software implementation example.
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frequentist framework, a commonly used regularization 
method is the Lasso, which adds an L1-norm penalty to the 
likelihood in penalizing the total number of added parameters 
(Tibshirani, 1996). The Bayesian Lasso estimates accomplish 
the same goals through choosing appropriate forms of prior 
distributions. Specifically, the L1-norm penalty is applied to the 
inverse of the covariance matrix with the graphical Lasso priors 
where independent exponential priors and the double expo-
nential priors are assigned respectively for the diagonal and the 
off-diagonal elements of Ψ � 1 (Khondker et al., 2013; Wang, 
2012). Let � ¼ Ψ � 1 ¼ ðσijÞp�p and λ be the shrinkage para-
meter, the double exponential density to have the form 
λ
2 expð� λjσijjÞ, i < j, whereas the exponential density function 
has the form λ

2 expð� λ
2 σiiÞ.

In frequentist Lasso estimates, the shrinkage parameter λ is 
often chosen by procedures such as cross-validation (Tibshirani, 
1996). Under the Bayesian framework, the shrinkage parameter 
λ is empirically determined along with other parameters simul-
taneously (Park & Casella, 2008). An appropriate prior is 
assigned to λ; that is, λ,Gammaðαλ0; βλ0Þ where the common 
choices for αλ0 and βλ0 are αλ0 ¼ 1 and βλ0 (e.g., value = 0.01) is 
small.

For the unknown parameters involved in μ , Λ , Φ , the 
following conjugate prior distributions are considered: 
For k ¼ 1; 2; � � � ; p, 

μ,Nð μ 0;Hμ0Þ; Λ k,Nð Λ 0k;H0kÞ;

Φ � 1,WishartðR0; ρ0Þ; (2) 

where Λ T
k is the kth row of Λ . μ 0, Λ 0k, ρ0, and positive 

definite matrices Hμ0, H0k, and R0 are hyperparameters whose 
values are assumed to be given from prior information of 
previous studies or other sources.

The two-step method for model estimation

The two-step approach in the blcfa consists of the following 
procedure:

(1) detect the significant residual covariances that are dif-
ferent from zero by the Bayesian Covariance Lasso 
method;

(2) free the identified residual covariance parameters and 
seamlessly feed the output from (1) into Mplus to obtain 
an appropriately modified CFA model for estimation.

In step (2), the residual covariances not deemed signifi-
cantly different from zero are assigned a value of zero for 
inputting to Mplus. The default significant criterion in 
detecting residual covariances is that zero is not included 
in the 95% highest posterior density (HPD) interval. Other 
criteria such as p-value (Muthén, 2010) with α ¼ 0:05 can 
also be specified. To illustrate the blcfa package usage in 
detail, we first provide an example using a small simulated 
data set so readers can follow and replicate. We then apply 
blcfa to a real data set to illustrate how the program 
functions in practice.

Software implementation example

Before using the blcfa package, the Mplus software needs to be 
available. If the user does not have access to Mplus or the 
environment variable does not include the path of Mplus, the 
user gets the following warning message: 

1 Error: Failed to run the Mplus software, 
check whether the Mplus has been installed or 
the environment variable of your computer 
includes the path of Mplus. 

The user still obtains the Mplus input file (.inp) and detailed 
results of the Bayesian Lasso CFA. However, the Mplus output file 
that contains the second-step analysis results cannot be automa-
tically generated. We recommend the latest version of R software 
as blcfa depends on other packages built with the latest version of 
R. Researchers that install the package from Github will be able to 
run the most up-to-date version of the blcfa codes:

1 install.packages(“devtools”) 
2 library(devtools) 
3 install_github(“zhanglj37/blcfa”) 

The line numbers in the left margin of the code are not part 
of the R code. Specifically, the first line of code prompts the 
devtools package download (Wickham et al., 2019) from 
CRAN. The command library(devtools) loads the devtools 
package. The latest blcfa package can be downloaded from 
Github using the install_github() function from the devtools 
package. The blcfa package depends on other packages such as 
MCMCpack, sna, and so forth. These additional packages can 
be automatically downloaded after running the abovemen-
tioned three lines of codes.

The following simple example illustrates the essential blcfa 
functions. The data were generated based on the model described 
in Figure 1(b): a two-factor CFA model with five items per factor 
and three non-zero residual covariances (ψ16;ψ27;ψ9;10). In this 
two-factor model, the true value of the first loading per factor was 
fixed to 1.0 and other loadings were set at 0.8. The factor variance 
and covariance were specified as 1.0 and 0.3, respectively. Residual 
correlations were set at 0.7 and residual variances (ψkk, where 
k ¼ 1; � � � ; 10) were set at 0.36. The data file (simu_data.txt) is 
embedded in the blcfa package:

1 library(blcfa) 
2 setwd(“C:/Users/Desktop/SimuExample/”) 
3 filename = system.file(“extdata”, “simu_ 

data.txt”, package = “blcfa”) 
4 varnames<-c(paste(“y”, 1:10, sep = “ ”)) 
5 usevar <- varnames 
6 myModel<-" 

7 f1 =~ y1 + y2 + y3 + y4 + y5 
8 f2 =~ y6 + y7 + y8 + y9 + y10 
9 " 

10 set.seed(1) 
11 results <- blcfa(filename, varnames, usevar, 
myModel, estimation = “both”, MCMAX = 5000, N. 
burn = 2500, bloutput = TRUE, interval = TRUE) 

Code for this example is also available through the com-
mand ?blcfa(). “In the second line”, the setwd() function is used 
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to specify the working directory at which the user wants the 
blcfa package outputs (e.g., Mplus files) stored. The embedded 
data file can be specified using the system.file() function. The 
filename variable records the absolute path of the data file, 
which is not in the current working directory. The extdata 
and simu_data.txt command refer to the location and file 
name of the raw data in the blcfa package, respectively. The 
names of variables should not be included in the data file. Each 
column in the data set represents the values of one specific 
variable and numbers on each line can be separated by one or 
more spaces or a tab. To facilitate a seamless integration with 
Mplus, only ASCII data files (e.g., data file suffixed with .dat, . 
txt) should be used. There is no missing data in the data file 
simu_data.txt. Handling of missing data will be discussed in 
the “Real-data Illustration” section.

Lines 4 and 5 indicate the names of the variables in the data set 
and a subset of variables for analysis (y1 � y10). In lines 6–9, the 
model (Figure 1(a)) is defined by a string: ¼ , defines the 
relationship between latent factors and the corresponding 
observed indicators. Each variable and symbol should be sepa-
rated by one or more spaces. The set.seed() function is used to 
specify the random seed used for random draws in the Bayesian 
lasso CFA. The set.seed command allows replicability of the result.

Line 11 shows the main blcfa function, which is called blcfa(). 
The parameter values in blcfa() can have different options as 
follows: estimation denotes the estimation method within Mplus, 
which takes the location of the significant item pairs identified by 
the Bayesian Lasso CFA and re-estimates the residual covariance 
matrix entries for the identified item pairs. The choice of estima-
tion method is specified in blcfa() and passed onto Mplus. When 
estimation value = both, both the ML (maximum likelihood) 
CFA and the Bayesian CFA will be reported. The default value 
for estimation is ml. When non-normality is detected, 
(jSkewnessj > 2 or jKurtosisj> 7; West et al., 1995), the mean 
adjusted maximum likelihood (MLM) will be used instead of 
ML. The parameter value of estimation can also be set at bayes to 
conduct the Bayesian CFA alone in the second-step analysis. The 
Bayesian CFA used in Mplus adopts a Gibbs sampling with 
a random-walk algorithm when residual covariance entries are 
estimated (Asparouhov & Muthén, 2010). Note that the choice 
of estimator in Mplus has no influence on the residual covariance 
identification of item pairs in the blcfa first-step. In other words, 
the modified entry locations in the covariance matrix remain the 
same regardless of the choice of estimation method.

The variable MCMAX defines the total number of Markov 
Chain Monte Carlo (MCMC) samples for inference (the 
default value is 10,000). N.burn denotes the number of dis-
carded MCMC samples (the default value is 5,000). By setting 
bloutput as TRUE (the default value is FALSE), users can 
obtain detailed results of the Bayesian covariance lasso CFA 
(e.g., posterior predictive p-value (PPp), estimates, and 95% 
HPD intervals of unknown model parameters). The parameter 
interval is used to specify the method for detecting significant 
residual covariances by a 95% HPD interval (the default is 
interval = TRUE) or p-value with α ¼ 0:05 (interval = FALSE).

Within the MCMC algorithm, two separate MCMC chains 
are generated and run simultaneously (see parallel computa-
tion in section Other Features). In this analysis, it took 
approximately 3 minutes to complete the Gibbs sampling 

within the following computing environment: PC with Intel 
Core i5-9400 F @2.90 GHz CPU and 16Gb RAM. The iteration 
progress of the MCMC chains is recorded in the log.txt file: 

1 The program is running. See “log.txt” for 
details.

Researchers can open the log.txt to check the process of the 
program:
1 Num of Iterations: 100 
2 Num of Iterations: 200 
3 Num of Iterations: 300 
4 Num of Iterations: 400 
5 . . .… 

The metrics for assessing convergence, measured by the 
estimated potential scale reduction (EPSR) values (Gelman, 
1996), are calculated by the sna package. The convergence 
criterion used in the package is EPSR value < 1.2 for each 
parameter. If the model fails to converge after the burn-in 
period, no result would be generated: 

1 Error: Failed to satisfy the convergence 
criterion. Check the epsr graph and increase 
the values of N.burn and MCMAX.

The EPSR graph can be automatically generated by the package 
if the model fails to converge or the bloutput is set as TRUE. 
Users can inspect the EPSR graph and consider to increase the 
N.burn and MCMAX values. This run took approximately 
1 minute to obtain the EPSR values. After achieving conver-
gence (Figure 2), the package reports statistics from the poster-
ior distribution. The MCMC sample means are used as point 
estimates. Significant residual covariances were detected by 
95% HPD intervals. Three residual covariances were identified 
in the first-step analysis, and the data were deemed normally 
distributed (Skewness: −0.134~0.237, Kurtosis: −0.562~0.700). 

Figure 2. Estimated Potential Scale Reduction (EPSR) values in the software 
implementation example. The black horizontal line indicates the threshold of 
EPSR value 1.2).
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The MplusAutomation package (Hallquist & Wiley, 2018) 
provides the runModels() function that can be used for run-
ning the Mplus input file. As a result, blcfa generated the 
following Mplus codes for ML estimation:

1 TITLE: Bayesian Lasso CFA 
2 DATA: FILE = D:/Software/R/R-4.0.1/ 
library/blcfa/extdata/simu_data.txt; 

3 VARIABLE: 
4 NAMES = y1 y2 y3 y4 y5 y6 y7 y8 y9 y10; 
5 USEV = y1 y2 y3 y4 y5 y6 y7 y8 y9 y10; 
6 ANALYSIS: 
7 ESTIMATOR = ML; 
8 MODEL: 
9 f1 by y1 y2 y3 y4 y5; 
10 f2 by y6 y7 y8 y9 y10; 
11 y6 with y1; 
12 y7 with y2; 
13 y10 with y9; 
14 

15 OUTPUT: TECH1 STDYX; 

In this example, Mplus input and output files were generated 
in the working directory – “C:/Users/Desktop/SimuExample/”. 
The FILE in the second line is the same as the filename variable 
as previously obtained through the system.file() function and 
records the absolute path of the data file, not the working 
directory. With exceptions for ANALYSIS, OUTPUT, and 
PLOT, the code for the Bayesian CFA model is similar to that 
for the ML estimator:

1 TITLE: Bayesian Lasso CFA 
2 DATA: FILE = D:/Software/R/R-4.0.1/library/ 
blcfa/extdata/simu_data.txt; 
3 VARIABLE: 
4 NAMES = y1 y2 y3 y4 y5 y6 y7 y8 y9 y10; 
5 USEV = y1 y2 y3 y4 y5 y6 y7 y8 y9 y10; 
6 ANALYSIS: 
7 ESTIMATOR = BAYES; 
8 ALGORITHM = GIBBS(RW); 
9 PROC = 2; 
10 BITERATIONS = (10000); 
11 MODEL: 
12 f1 by y1 y2 y3 y4 y5; 
13 f2 by y6 y7 y8 y9 y10; 
14 y6 with y1; 
15 y7 with y2; 
16 y10 with y9; 
17 

18 OUTPUT: TECH1 TECH8 STDYX; 
19 PLOT: TYPE = PLOT2; 

In the ANALYSIS part, ALGORITHM = GIBBS(RW) refers 
to the Gibbs sampling with the random-walk algorithm 
(Asparouhov & Muthén, 2010). PROC is specified at 2 to speed 
up computations as dual processors are available. BITERATIONS 
specifies the minimum number of iterations, which is set at 
10,000. The maximum number of iterations is set at 50,000 by 
default and it can also be specified manually before the brackets. 
Implementation of the Mplus code is automatic. If a user wants to 
inspect the results of the first-step analysis and the second-step 
analysis, the following codes can be applied within R:

1 ## results of the first-step analysis 
2 > results 
3 $blcfa_est 
4 $blcfa_est $ppp 
5 [1] 0.5156 
6 

7 $blcfa_est $ly 
8 est se p-value HPD_lower HPD_upper 
9 f1 by y2 0.936 0.043 0 0.850 1.013 
10 ... 
11 

12 ## results of the second-step analysis 
13 > sum_second(results) 
14 Reading model: blcfa_bayes.out 
15 Reading model: blcfa_ml.out 
16 $bayes_fit 
17 ... 
18 Parameters CFI TLI BIC DIC pD RMSEA_Estimate 
RMSEA_90CI_LB 
19 1 34 1 0.999 10991.69 10846.96 33.226 0.001 0 
20 RMSEA_90CI_UB RMSEA_pLT05 
ObsRepChiSqDiff_95CI_LB 
ObsRepChiSqDiff_95CI_UB 
21 1 0.032 1 -28.816 29.6 
22 PostPred_PValue Filename 
23 1 0.465 blcfa_bayes.out 
24 

25 $bayes_par_est 
26 paramHeader param est posterior_sd pval 
lower_2.5ci upper_2.5ci sig 
27 1 F1.BY Y1 1.000 0.000 0 1.000 1.000 FALSE 
28 2 F1.BY Y2 0.777 0.026 0 0.728 0.831 TRUE 
29 ... 
30 

31 $bayes_par_est_std 
32 paramHeader param est posterior_sd pval 
lower_2.5ci upper_2.5ci sig 
33 1 F1.BY Y1 0.863 0.013 0 0.835 0.888 TRUE 
34 2 F1.BY Y2 0.811 0.017 0 0.776 0.842 TRUE 
35 ... 
36 

37 $ml_fit 
38 ... 
39 ChiSqBaseline_PValue LL UnrestrictedLL CFI 
TLI AIC BIC 
40 1 0 -5389.93 -5373.401 0.999 0.999 10847.86 
10991.16 
41 ... 
42 

43 $ml_par_est 
44 paramHeader param est se est_se pval 1 F1.BY 
Y1 
45 1.000 0.000 999.000 999 
46 ... 

47 

48 $ml_par_est_std 
49 paramHeader param est se est_se pval 
50 1 F1.BY Y1 0.864 0.013 64.475 0 
51 ... 

To save space, we use the “ . . . ” sign to indicate the output 
not presented. The command results shows the detailed results 
of the first-step analysis, where PPp value (= 0.5156). The 
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estimated loading (est) of y2 on f1 is 0.936, the standard error 
(se) estimate is 0.043, the p-value < 0:01, and the credible 
interval is ð0:850; 1:013Þ.

The command sum_second() function summarizes the 
results of the second-step analysis, including the model fitting, 
and unstandardized and standardized estimates of the Bayesian 
CFA and the ML CFA. Model-fitting indices in the Bayesian 
CFA include the Bayesian adaptive comparative fit index 
(CFI = 1.000), the Tucker–Lewis index (TLI = 0.999), the 
Bayesian information criterion (BIC = 10991.69), the deviance 
information criterion (DIC = 10846.96), the root-mean-square 
error of approximation (RMSEA = 0.001), a 90% confidence 
interval of RMSEA [0, 0.032], p-value of RMSEA (1.000), a 95% 
confidence interval for the difference between the observed and 
the replicated Chi-Square Values [−28.816, 29.6], and the 
PPp value (PostPred_PValue = 0.465). Model-fitting indices 
in the ML CFA include the p-value of chi-square test of model 
fit for the baseline model (ChiSqBaseline_PValue = 0), the log- 
likelihood of model specified in the MODEL command 
(LL = −5389.93), loglikelihood of the model with unrestricted 
means, variances, and covariances of the observed variables 
(UnrestrictedLL = −5373.401), the CFI (0.999), the TLI 
(0.999), the Akaike information criterion (AIC = 10847.86), 
the BIC (10991.16), and so on. When bloutput was set as 
TRUE, detailed results of the first-step analysis were saved in 
the results folder rooted at the current working directory:

1 EPSR.png # Figure 2 
2 ppp.csv # posterior predictive p-value 
3 ly.csv # loadings 
4 mu.csv # intercepts 
5 phi.csv # the variance-covariance matrix of 
factors 
6 phi_cormatrix.csv # the correlation matrix 
of factors 
7 psx.csv # the variance-covariance matrix of 
items 
8 psx_sig.csv # significant residual covariances 

Taking the psx.csv as example, this file records the estimates, 
standard errors, standardized estimates, p-values, and HPD inter-
vals of residual variances and covariances (Table 1). The table 
also correctly identifies the three non-zero residual covariances in 
the first-step analysis. The ML CFA and Bayesian CFA estimates 
in the second-step analysis are similar (Table 2).

Real-data illustration

We used a previously published structural equation modeling 
example in Byrne (2012) for our real-data illustration. Byrne 
and Watkins (2003) analyzed this data set for demonstrating 
the measurement invariance of a self-concept scale across two 
groups with different cultural background. Byrne (2012) 
further used this data to illustrate how to conduct a multi- 
group CFA model using Mplus. The data were collected from 
a survey on four nonacademic self-concept subscales of the 
Self-Description Questionnaire-I (SDQ-I, Marsh, 1992). There 
are four latent factors of nonacademic self-concept with eight 
items per factor (Physical Appearance, PAP, e.g., “I am good 

looking”; Physical Abilities, PAB, e.g., “I can run fast”; Peer 
Relations, PER, e.g., “I have lots of friends”; Parent Relations, 
PAR, e.g., “My parents understand me”). For each item, parti-
cipants were asked to rate on a 5-point Likert-type scale where 
1 = False, 2 = Mostly False, 3 = Sometimes False Sometimes 
True, 4 = Mostly True and 5 = True.

The data set was collected from a sample of Nigerian ado-
lescents (N = 463) and included missing scores. Ninety-three 
participants (20.09%) did not respond to at least one item. The 
proportion of missing values ranges from 3.13% to 40.63%. 
Following Byrne and Watkins (2003), cases with more than 8% 
missing values (N = 30) were deleted. The remaining missing 

Table 1. Partial results of the residual variances and covariances in the first-step 
analysis.

est se cor p HPD_lower HPD_upper

y1 with y1 0.298 0.060 1.000 0.000 0.179 0.414
y2 with y1 0.035 0.050 0.105 0.277 −0.047 0.131
y2 with y2 0.377 0.062 1.000 0.000 0.268 0.491
y3 with y1 0.010 0.047 0.028 0.465 −0.065 0.104
y3 with y2 0.037 0.050 0.095 0.218 −0.046 0.137
y3 with y3 0.399 0.081 1.000 0.000 0.263 0.552
y4 with y1 0.001 0.049 0.002 0.593 −0.092 0.087
y4 with y2 0.040 0.049 0.106 0.189 −0.050 0.129
y4 with y3 −0.025 0.042 −0.063 0.269 −0.103 0.055
y4 with y4 0.380 0.079 1.000 0.000 0.194 0.510
y5 with y1 0.043 0.051 0.133 0.191 −0.045 0.146
y5 with y2 0.018 0.046 0.050 0.376 −0.071 0.097
y5 with y3 −0.002 0.047 −0.005 0.468 −0.089 0.091
y5 with y4 0.006 0.055 0.016 0.517 −0.104 0.100
y5 with y5 0.354 0.068 1.000 0.000 0.211 0.485
y6 with y1 0.184 0.037 0.607 0.000 0.112 0.250
y6 with y2 0.001 0.036 0.004 0.494 −0.063 0.072

. . . . . . .

. . . . . . .

. . . . . . .
y7 with y2 0.246 0.042 0.655 0.000 0.174 0.334

. . . . . . .

. . . . . . .

. . . . . . .
y10 with y9 0.140 0.076 0.562 0.002 0.004 0.258
y10 with y10 0.244 0.080 1.000 0.000 0.103 0.373

To save space, we selected the 20 lines in psx.csv. est = estimate; se = standard 
error; cor = correlation (standardized estimate); HPD_lower = lower bound of 
95% highest posterior density interval; HPD_upper = upper bound of 95% 
highest posterior density interval.

Table 2. Standardized estimates (Est) in the second-step analysis of the software 
implementation example.

ML Bayes

Parameter Est SE p Est SD 95% CI

λ11 0.864 0.013 0.000 0.863 0.013 (0.835,0.888)
λ21 0.810 0.017 0.000 0.811 0.017 (0.776,0.842)
λ31 0.768 0.021 0.000 0.768 0.020 (0.725,0.806)
λ41 0.782 0.020 0.000 0.783 0.020 (0.742,0.818)
λ51 0.817 0.017 0.000 0.817 0.017 (0.780,0.848)
λ62 0.848 0.015 0.000 0.845 0.014 (0.817,0.871)
λ72 0.809 0.017 0.000 0.809 0.017 (0.775,0.841)
λ82 0.808 0.018 0.000 0.808 0.018 (0.769,0.841)
λ92 0.822 0.018 0.000 0.823 0.017 (0.788,0.854)
λ10;2 0.825 0.017 0.000 0.826 0.016 (0.792,0.856)
ϕ12 0.258 0.046 0.000 0.260 0.045 (0.166,0.342)
ψ16 0.750 0.035 0.000 0.747 0.036 (0.672,0.814)
ψ27 0.679 0.032 0.000 0.679 0.031 (0.615,0.735)
ψ9;10 0.675 0.029 0.000 0.674 0.028 (0.614,0.721)

ML = maximum likelihood estimator; Bayes = Bayesian estimation; Est = estimate; 
SE = standard error; SD = standard deviation of the Markov Chain Monte Carlo 
samples; 95% CI = 95% confidence interval.
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scores were assumed as missing-at-random and imputed using 
a block Gibbs sampler within blcfa.

Following Byrne (2012), we treated response data as contin-
uous and used a four-factor CFA model (Figure 3). The Bayesian 
lasso CFA was applied to the data set with following code:

1 library(blcfa) 
2 setwd(“C:/Users/Desktop/RealExample/”) 
3 filename = “SDQ.dat” 
4 varnames <- c(‘s1ʹ, ‘s3ʹ, ‘s5ʹ, ‘s7ʹ, ‘s8ʹ, 
‘s10ʹ, 
5 ‘s14ʹ, ‘s15ʹ, ‘s19ʹ, ‘s22ʹ, ‘s24ʹ, ‘s26ʹ, 
6 ‘s28ʹ, ‘s32ʹ, ‘s34ʹ, ‘s36ʹ, ‘s38ʹ, ‘s40ʹ, 
7 ‘s42ʹ, ‘s44ʹ, ‘s46ʹ, ‘s48ʹ, ‘s50ʹ, ‘s52ʹ, 
8 ‘s54ʹ, ‘s56ʹ, ‘s58ʹ, ‘s60ʹ, ‘s62ʹ, ‘s64ʹ, ‘s66ʹ, 
‘s69ʹ) 
9 usevar <- varnames 
10 myModel<-” 
11 f1 = ~s1 + s8 + s15 + s22 + s38 + s46 + s54 + s62 
12 f2 = ~s3 + s10 + s24 + s32 + s40 + s48 + s56 + s64 
13 f3 = ~s7 + s14 + s28 + s36 + s44 + s52 + s60 + s69 
14 f4 = ~s5 + s19 + s26 + s34 + s42 + s50 + s58 + s66 
15” 
16 set.seed(1234) 
17 blcfa(filename, varnames, usevar, myModel, 
estimation=“both”, ms = 999, MCMAX = 16000, N. 
burn = 8000, bloutput = TRUE) 

Specifically, the third line of code denotes the name of the 
data file. The filename, which does not contain an absolute path, 
is relative to the current working directory defined in the second 
line. In lines 11–14, the four-factor model is defined according 
to the relationship between latent factors and the corresponding 
observed indicators in Figure 3. In line 17, the ms parameter 
(here set to the value 999) is used to identify missing or invalid 
value. When NA is used to represent the missing value, there is 
no need to define the ms variable. The blcfa package imputes 
missing values using Gibbs sampler and generates a new data set 
with imputed values for Mplus analysis.

In this example, we selected estimation = “both” so both the 
ML (frequentist) and Bayesian estimation results were gener-
ated. A preliminary analysis showed that the data did not 
satisfy the multivariate normal distribution assumption. As 
a result, the algorithm switched from ML over to MLM. The 
four-factor model with identified residual covariances was 
eventually re-analyzed using the MLM and the Bayesian esti-
mation. Additionally, the input data set to Mplus were also 
updated by standardizing the raw data and imputing missing 
values (Line 2: data_imputed.txt). The input file of the final 
model with MLM estimation is as follows.

1 TITLE: Bayesian Lasso CFA 
2 DATA: FILE = data_imputed.txt; 
3 VARIABLE: 
4 NAMES = s1 s3 s5 s7 s8 s10 s14 s15 s19 s22 
5 s24 s26 s28 s32 s34 s36 s38 s40 s42 s44 
6 s46 s48 s50 s52 s54 s56 s58 s60 s62 s64 
7 s66 s69; 
8 USEV = s1 s3 s5 s7 s8 s10 s14 s15 s19 s22 
9 s24 s26 s28 s32 s34 s36 s38 s40 s42 s44 
10 s46 s48 s50 s52 s54 s56 s58 s60 s62 s64 
11 s66 s69; 
12 ANALYSIS: 
13 ESTIMATOR = MLM; 
14 MODEL: 
15 f1 by s1 s8 s15 s22 s38 s46 s54 s62; 
16 f2 by s3 s10 s24 s32 s40 s48 s56 s64; 
17 f3 by s7 s14 s28 s36 s44 s52 s60 s69; 

Figure 3. Model structure of the four nonacademic self-concept dimensions of the 
self-description questionnaire-I (PAP, physical appearance; PAB, physical abilities; 
PER, peer relations; PAR, parent relations).
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18 f4 by s5 s19 s26 s34 s42 s50 s58 s66; 
19 

20 s8 with s1; 
21 s22 with s15; 
22 s26 with s19; 
23 s28 with s19; 
24 s38 with s3; 
25 s42 with s28; 
26 s46 with s14; 
27 s46 with s26; 
28 s46 with s32; 
29 s48 with s38; 
30 s50 with s38; 
31 s50 with s42; 
32 s50 with s48; 
33 s52 with s10; 
34 s54 with s44; 
35 s56 with s48; 
36 s62 with s34; 
37 s66 with s28; 
38 s66 with s36; 
39 s66 with s42; 
40 s69 with s38; 
41 s69 with s50; 
42 

43 OUTPUT: TECH1 STDYX; 

The analysis shows that in the residual variance-covariance 
matrix, 22 or 4.4% significant item-pairs were simultaneously 
detected out of a total 496 (=C(32,2)) item pairs by the BLCFA 
method, and all of them were found significant in the second- 
step analysis using the Bayesian estimation (Table 3). To save 
space, we highlight one within-factor and one between-factor 
residual covariances for illustration. The BLCFA method iden-
tified significant positive correlation between two items within 
the PAR factor: the 19th item (I like my parents) and the 26th 

item (My parents like me), which seemed to indicate recipro-
cality in affection between parent and child that leads to posi-
tive residual covariance. Result also showed that the 44th item 
(Other Kids want me to be their friends) of PER factor was 
positively correlated with the 54th item (I’m better looking than 
most of my friends) of the PAP factor. It is possible that the 
significant residual covariance between the responses to these 
two items was related to a common driver such as narcissism.

The results derived from the frequentist (MLM) and the 
Bayesian approaches were consistent. Estimates of loadings, 
factor variances and covariances for the two methods were 
almost identical. For example, the standardized factor load-
ings were between 0.303 and 0.810 using the MLM estimator 
and between 0.303 and 0.811 using the Bayesian estimation 
(Table 4). The correlations between the four factors were 
found to be significantly positive for both methods.

Other features

This package contains other features designed to improve the 
functionality and user experience of the SEM tool, which we 

Table 3. The significant residual covariances and their estimates in the second- 
step analysis.

MLM Bayes

Residual Covariance Est SE p Est SD 95% CI

s8 with s1 0.133 0.042 0.001 0.139 0.039 (0.066,0.221)
s22 with s15 0.085 0.050 0.090 0.088 0.039 (0.014,0.166)
s26 with s19 0.161 0.045 0.000 0.166 0.034 (0.105,0.235)
s28 with s19 0.064 0.032 0.044 0.065 0.028 (0.012,0.120)
s38 with s3 0.072 0.034 0.037 0.073 0.032 (0.011,0.135)
s42 with s28 0.125 0.046 0.006 0.128 0.037 (0.059,0.201)
s46 with s14 0.152 0.047 0.001 0.155 0.039 (0.078,0.234)
s46 with s26 0.093 0.037 0.011 0.096 0.036 (0.028,0.169)
s46 with s32 0.118 0.036 0.001 0.120 0.038 (0.046,0.196)
s48 with s38 0.106 0.036 0.003 0.109 0.041 (0.030,0.192)
s50 with s38 0.138 0.043 0.001 0.141 0.039 (0.069,0.219)
s50 with s42 0.089 0.035 0.011 0.091 0.035 (0.023,0.163)
s50 with s48 0.108 0.042 0.011 0.110 0.036 (0.040,0.183)
s52 with s10 0.113 0.046 0.014 0.115 0.036 (0.046,0.189)
s54 with s44 0.130 0.034 0.000 0.131 0.035 (0.063,0.203)
s56 with s48 0.070 0.032 0.031 0.071 0.034 (0.005,0.139)
s62 with s34 0.161 0.040 0.000 0.164 0.045 (0.079,0.257)
s66 with s28 0.114 0.040 0.005 0.116 0.042 (0.038,0.201)
s66 with s36 0.070 0.037 0.059 0.069 0.034 (0.006,0.137)
s66 with s42 0.127 0.053 0.016 0.128 0.036 (0.061,0.202)
s69 with s38 0.091 0.041 0.028 0.092 0.039 (0.017,0.171)
s69 with s50 0.145 0.050 0.004 0.148 0.039 (0.074,0.226)

MLM = mean-adjusted maximum likelihood estimator; Bayes = Bayesian estima-
tion; Est = estimate; SE = standard error; SD = standard deviation of the Markov 
Chain Monte Carlo samples; 95% CI = 95% confidence interval.

Table 4. Standardized estimates (Est) in the second-step analysis of the real-data 
analysis.

MLM Bayes

Parameter Est SE p Est SD 95% CI

λ11 0.585 0.045 0.000 0.580 0.047 (0.458,0.654)
λ81 0.652 0.043 0.000 0.650 0.036 (0.575,0.714)
λ15;1 0.555 0.046 0.000 0.554 0.040 (0.470,0.627)
λ22;1 0.554 0.048 0.000 0.554 0.040 (0.472,0.627)
λ38;1 0.362 0.049 0.000 0.359 0.046 (0.265,0.447)
λ46;1 0.636 0.047 0.000 0.634 0.035 (0.561,0.698)
λ54;1 0.331 0.044 0.000 0.331 0.049 (0.233,0.424)
λ62;1 0.639 0.047 0.000 0.639 0.035 (0.566,0.703)
λ32 0.689 0.033 0.000 0.678 0.031 (0.616,0.740)
λ10;2 0.426 0.044 0.000 0.426 0.044 (0.337,0.508)
λ24;2 0.631 0.035 0.000 0.631 0.034 (0.560,0.694)
λ32;2 0.423 0.046 0.000 0.422 0.044 (0.332,0.505)
λ40;2 0.810 0.022 0.000 0.811 0.024 (0.759,0.855)
λ48;2 0.591 0.035 0.000 0.590 0.037 (0.513,0.659)
λ56;2 0.671 0.040 0.000 0.671 0.032 (0.604,0.730)
λ64;2 0.468 0.045 0.000 0.468 0.042 (0.382,0.547)
λ73 0.414 0.045 0.000 0.406 0.047 (0.316,0.490)
λ14;3 0.500 0.046 0.000 0.500 0.044 (0.411,0.581)
λ28;3 0.533 0.045 0.000 0.531 0.042 (0.446,0.609)
λ36;3 0.512 0.046 0.000 0.513 0.042 (0.426,0.592)
λ44;3 0.564 0.045 0.000 0.564 0.040 (0.483,0.640)
λ52;3 0.303 0.049 0.000 0.303 0.050 (0.203,0.398)
λ60;3 0.553 0.043 0.000 0.554 0.041 (0.468,0.629)
λ69;3 0.657 0.041 0.000 0.656 0.036 (0.582,0.722)
λ54 0.607 0.044 0.000 0.601 0.038 (0.534,0.678)
λ19;4 0.664 0.034 0.000 0.664 0.033 (0.594,0.724)
λ26;4 0.707 0.032 0.000 0.706 0.030 (0.642,0.760)
λ34;4 0.532 0.047 0.000 0.534 0.040 (0.450,0.608)
λ42;4 0.521 0.044 0.000 0.520 0.040 (0.436,0.595)
λ50;4 0.564 0.047 0.000 0.564 0.038 (0.485,0.634)
λ58;4 0.666 0.037 0.000 0.669 0.032 (0.601,0.728)
λ66;4 0.473 0.043 0.000 0.472 0.043 (0.386,0.552)
ϕ12 0.362 0.054 0.000 0.364 0.053 (0.255,0.463)
ϕ13 0.726 0.046 0.000 0.724 0.041 (0.641,0.797)
ϕ23 0.381 0.056 0.000 0.383 0.050 (0.281,0.476)
ϕ14 0.837 0.053 0.000 0.834 0.030 (0.767,0.888)
ϕ24 0.440 0.047 0.000 0.442 0.047 (0.346,0.530)
ϕ34 0.737 0.039 0.000 0.734 0.037 (0.659,0.803)

ML = maximum likelihood estimator; Bayes = Bayesian estimation; Est = estimate; 
SE = standard error; SD = standard deviation of the Markov Chain Monte Carlo 
samples; 95% CI = 95% confidence interval.
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highlight here. Readers may find these features useful for their 
specific applications.

(1) Parallel computation. The total number of available CPU 
cores is automatically detected using the detectCores() 
function. If the CPU has more than one core, two cores 
will be selected for the two MCMC chains to run sepa-
rately and simultaneously using the foreach() function 
from the doParallel package (Ooi et al., 2019). 
Otherwise, the two chains can only run successively 
such that the run time of the Gibbs sampling doubles. 
Because the Bayesian Lasso estimation is computation-
ally intensive, parallel computation allows users to 
accomplish tasks that include a large number of modified 
residual covariances within a reasonable timeframe.1

(2) Missing values. Under the missing-at-random (MAR) 
assumption for missing values, this package imputes 
missing values and generates an imputed data set. The 
block Gibbs sampler proposed by Pan et al. (2017) offers 
a convenient way to handle the MAR missing response. 
The conditional distributions of a missing variable use 
data from other variables to inform the imputation. As 
an example, in the real-data application, the missing 
values of the 46th and 60th items in the response of 
the 84th participant were imputed as 0.000 and −0.009 
after data standardization.

(3) Non-normality detection. When the estimation is set at 
ml or both, the blcfa tests whether the item responses are 
normally distributed. A Mplus input file (normal.inp) is 
automatically generated to detect non-normality. As 
described in the first example, the MLM method will be 
applied if the data fail to satisfy the multivariate normal 
assumption. Note that if the environment variable does 
not include the Mplus software path, the normal test will 
not be conducted and the ML estimator will be applied.

(4) In practice, the non-normality test and model estima-
tion are often separately conducted. We provide an 
example for using the mplus_ml() function in this 
package to detect non-normality of data and generate 
the Mplus file for the CFA in a single step without doing 
the Bayesian Lasso CFA analysis. If the user is confident 
of the diagonal structure of the residual variance-covar-
iance matrix, the user can follow the following code:

1 library(blcfa) 
2 setwd(“C:/Users/Desktop/SimuExample/”) 
3 filename = system.file(“extdata”, “simu_data. 
txt”, package = “blcfa”) 
4 varnames<-c(paste(“y”, 1:10, sep = ““)) 
5 usevar <- varnames 
6 myModel<-” 
7 f1 = ~y1 + y2 + y3 + y4 + y5 
8 f2 = ~y6 + y7 + y8 + y9 + y10 
9 “ 
10 mplus_ml(filename, varnames, usevar, 
myModel) 

(5) Convergence check. The blcfa automatically checks the 
model convergence with the results of two MCMC 
chains. Convergence checks are computationally inten-
sive and time-consuming. The package offers users the 
flexibility to generate a single MCMC chain and obtain 
estimates without conducting any convergence check:

1 blcfa(filename, varnames, usevar, myModel, 
estimation = “ml”, MCMAX = 6000, N.burn = 3000, 
bloutput = TRUE, conver_check = FALSE)

The conver_check that is TRUE by default can be set at 
FALSE to switch off the convergence check. This function is 
attractive when conducting a simulation study, for example. 
Another use of this function is when a user wants to check if 
the model converges with a pre-specified value of N.burn. The 
number of MCMAX can be set at a value slightly higher than N. 
burn to reduce run time:

1 blcfa(filename, varnames, usevar, myModel, 
estimation = “ml”, MCMAX = 3100, N.burn = 
3000, bloutput = TRUE) 

After reaching the appropriate N.burn value that is deemed 
sufficient for model convergence, convergence check can be 
switched off and the MCMAX value increased to obtain accu-
rate estimates.

Discussion

This article offers a didactic discussion of a two-step CFA for 
simultaneously detecting significant residual covariances and 
attaining a modified CFA with additional covariance parameter, 
which is implemented in the R package blcfa. Besides explaining 
the underlying principle of the procedure, we offer a tutorial for 
the blcfa package that implements the two-step approach.

The benefits of blcfa can be summarized as follows. Model 
modification via freeing some of the residual covariance para-
meters can lead to improved goodness of fit in the CFA without 
major changes to the factor structure. Indeed, it was shown that 
proper modifications of residual covariances can reduce bias in 
structural models (Pan et al., 2017). The package blcfa allows 
users to simultaneously detect all significant residual correla-
tions in one step and fit a CFA without going through the 
tedious procedure required of the PMM sequential approach. 
The approach implemented in blcfa therefore is also less vul-
nerable to subjective choice in selecting which MIs to include. 
By assigning zero to non-significant residual covariances, blcfa 
provides a sparse representation of the covariance structure, 
which is more interpretable than a covariance matrices with 
many close-to-zero entries. An important practical benefit of 
blcfa is the integration of the Bayesian Lasso estimation results 
into Mplus. Thus, a user can now conduct a CFA without 
having to switch programs. Finally, a user may also want to 
take advantage of results from the Bayesian Lasso analysis for 
model diagnostics. For example, a high value of residual 

1Parallel computation is not available using Rstudio v1.3.959 or lower on MacOS with R v4.0.0 or higher. This bug was fixed by Rstudio v1.3.1056 released on July 15, 
2020. Therefore, Rstudio downloaded after July 15, 2020 or R are suggested when using the current version of the blcfa package on MacOS.
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covariance in specific cross-loaded item pair could indicate 
a problem in the specified factor structure.

In the future development of blcfa, we plan to incorporate 
an adaptive version of the lasso method (Zou, 2006), which 
may improve power in the detection of residual covariance 
when sample size or/and effect size are small. Additionally, in 
addition to using the HPD interval method, alternative meth-
ods of detecting significance in residual covariance include p- 
values and the threshold method (Feng et al., 2015). Work is 
currently underway comparing performances of the methods 
in terms of power and the Type I error rate. Based on the 
finding, additional features for method of detecting signifi-
cance in residual covariance will be incorporated into blcfa.
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